Lecture

Linear Transformations: Dimension Theorems

In course
DEMO: minim quis exercitation
Sunt proident aliqua anim officia commodo cillum. Veniam cupidatat do voluptate sint et incididunt nostrud velit ea officia proident ad. Aute enim magna velit deserunt do ut do cupidatat commodo quis consequat cupidatat id. In nostrud veniam aliquip nostrud enim adipisicing sunt aliquip velit cillum commodo aliquip duis pariatur. Et consectetur deserunt consequat proident veniam esse enim exercitation dolore nulla aliquip enim.
Login to see this section
Description

This lecture covers the dimension theorems related to linear transformations, including the Kernel-Image Theorem. It explains how the dimensions of the domain, kernel, and image of a linear transformation are related. The lecture also discusses the criteria for bijectivity and isomorphism between vector spaces of finite dimension. Additionally, it explores the concept of dual spaces and the isomorphism between a vector space and its dual. The lecture concludes with the construction of dual linear transformations and the canonical applications between vector spaces.

This video is available exclusively on Mediaspace for a restricted audience. Please log in to MediaSpace to access it if you have the necessary permissions.

Watch on Mediaspace
Instructors (2)
nisi laboris ullamco sunt
Aute ullamco enim amet dolor Lorem exercitation commodo. Mollit commodo fugiat quis fugiat non laborum cillum. Non do mollit ea mollit anim.
ut dolor
Cupidatat amet commodo culpa in mollit ipsum elit voluptate mollit minim. Sunt quis ad eu cupidatat ea. Nostrud id esse reprehenderit ut irure anim aliqua dolore cupidatat aute. Sit duis nostrud ipsum Lorem commodo reprehenderit ex officia fugiat commodo nulla et dolore.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.