Publication

Statistical analysis of clusters of extreme events

Mária Süveges
2009
EPFL thesis
Abstract

The thesis is a contribution to extreme-value statistics, more precisely to the estimation of clustering characteristics of extreme values. One summary measure of the tendency to form groups is the inverse average cluster size. In extreme-value context, this parameter is called the extremal index, and apart from its relation with the size of groups, it appears as an important parameter measuring the effects of serial dependence on extreme levels in time series. Although several methods exist for its estimation in univariate sequences, these methods are only applicable for strictly stationary series satisfying a long-range asymptotic independence condition on extreme levels, cannot take covariates into consideration, and yield only crude estimates for the corresponding multivariate quantity. These are strong restrictions and great drawbacks. In climatic time series, both stationarity and asymptotic independence can be broken, due to climate change and possible long memory of the data, and not including information from simultaneously measured linked variables may lead to inefficient estimation. The thesis addresses these issues. First, we extend the theorem of Ferro and Segers (2003) concerning the distribution of inter-exceedance times: we introduce truncated inter-exceedance times, called K-gaps, and show that they follow the same exponential-point mass mixture distribution as the inter-exceedance times. The maximization of the likelihood built on this distribution yields a simple closed-form estimator for the extremal index. The method can admit covariates and can be applied with smoothing techniques, which allows its use in a nonstationary setting. Simulated and real data examples demonstrate the smooth estimation of the extremal index. The likelihood, based on an assumption of independence of the K-gaps, is misspecified whenever K is too small. This motivates another contribution of the thesis, the introduction into extreme-value statistics of misspecification tests based on the information matrix. For our likelihood, they are able to detect misspecification from any source, not only those due to a bad choice of the truncation parameter. They provide help also in threshold selection, and show whether the fundamental assumptions of stationarity or asymptotic independence are broken. Moreover, these diagnostic tests are of general use, and could be adapted to many kinds of extreme-value models, which are always approximate. Simulated examples demonstrate the performance of the misspecification tests in the context of extremal index estimation. Two data examples with complex behaviour, one univariate and the other bivariate, offer insight into their power in discovering situations where the fundamental assumptions of the likelihood model are not valid. In the multivariate case, the parameter corresponding to the univariate extremal index is the multivariate extremal index function. As in the univariate case, its appearance is linked to serial dependence in the observed processes. Univariate estimation methods can be applied, but are likely to give crude, unreasonably varying, estimates, and the constraints on the extremal index function implied by the characteristics of the stable tail dependence function are not automatically satisfied. The third contribution of the thesis is the development of methodology based on the M4 approximation of Smith and Weissman (1996), which can be used to estimate the multivariate extremal index, as well as other cluster characteristics. For this purpose, we give a preliminary cluster selection procedure, and approximate the noise on finite levels with a flexible semiparametric model, the Dirichlet mixtures used widely in Bayesian analysis. The model is fitted by the EM algorithm. Advantages and drawbacks of the method are discussed using the same univariate and bivariate examples as the likelihood methods.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (42)
Maximum likelihood estimation
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.
Normal distribution
In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution (and also its median and mode), while the parameter is its standard deviation. The variance of the distribution is . A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.
Cauchy distribution
The Cauchy distribution, named after Augustin Cauchy, is a continuous probability distribution. It is also known, especially among physicists, as the Lorentz distribution (after Hendrik Lorentz), Cauchy–Lorentz distribution, Lorentz(ian) function, or Breit–Wigner distribution. The Cauchy distribution is the distribution of the x-intercept of a ray issuing from with a uniformly distributed angle. It is also the distribution of the ratio of two independent normally distributed random variables with mean zero.
Show more
Related publications (291)

Generalized Bradley-Terry Models for Score Estimation from Paired Comparisons

Julien René Pierre Fageot, Sadegh Farhadkhani, Oscar Jean Olivier Villemaud, Le Nguyen Hoang

Many applications, e.g. in content recommendation, sports, or recruitment, leverage the comparisons of alternatives to score those alternatives. The classical Bradley-Terry model and its variants have been widely used to do so. The historical model conside ...
AAAI Press2024

Valence can control the nonexponential viscoelastic relaxation of multivalent reversible gels

Hugo Camille Valentin Le Roy

Gels made of telechelic polymers connected by reversible cross-linkers are a versatile design platform for biocompatible viscoelastic materials. Their linear response to a step strain displays a fast, near-exponential relaxation when using low-valence cros ...
Amer Assoc Advancement Science2024

TIC-TAC: A Framework for Improved Covariance Estimation in Deep Heteroscedastic Regression

Mathieu Salzmann, Alexandre Massoud Alahi, Megh Hiren Shukla

Deep heteroscedastic regression involves jointly optimizing the mean and covariance of the predicted distribution using the negative log-likelihood. However, recent works show that this may result in sub-optimal convergence due to the challenges associated ...
2024
Show more
Related MOOCs (32)
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.