Publication

A Probabilistic Temporal Model for Joint Attribute Extraction and Behavior Recognition

Jean-Philippe Thiran, Laura Ioana Gui
2009
Report or working paper
Abstract

The focus of this paper is on the recognition of single object behavior from monocular image sequences. The general literature trend is to perform behavior recognition separately after an initial phase of feature/attribute extraction. We propose a framework where behavior recognition is performed jointly with attribute extraction, allowing the two tasks to mutually improve their results. To this end, we express the joint recognition / extraction problem in terms of a probabilistic temporal model, allowing its resolution via a variation of the Viterbi decoding algorithm, adapted to our model. Within the algorithm derivation, we translate probabilistic attribute extraction into a variational segmentation scheme. We demonstrate the viability of the proposed framework through a particular implementation for finger-spelling recognition. The obtained results illustrate the superiority of our collaborative model with respect to the traditional approach, where attribute extraction and behavior recognition are performed sequentially.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Facial recognition system
A facial recognition system is a technology potentially capable of matching a human face from a or a video frame against a database of faces. Such a system is typically employed to authenticate users through ID verification services, and works by pinpointing and measuring facial features from a given image. Development began on similar systems in the 1960s, beginning as a form of computer application. Since their inception, facial recognition systems have seen wider uses in recent times on smartphones and in other forms of technology, such as robotics.
Activity recognition
Activity recognition aims to recognize the actions and goals of one or more agents from a series of observations on the agents' actions and the environmental conditions. Since the 1980s, this research field has captured the attention of several computer science communities due to its strength in providing personalized support for many different applications and its connection to many different fields of study such as medicine, human-computer interaction, or sociology.
Feature engineering
Feature engineering or feature extraction or feature discovery is the process of extracting features (characteristics, properties, attributes) from raw data. Due to deep learning networks, such as convolutional neural networks, that are able to learn it by itself, domain-specific- based feature engineering has become obsolete for vision and speech processing.
Show more
Related publications (55)

Indexing Protected Deep Face Templates by Frequent Binary Patterns

Sébastien Marcel, Hatef Otroshi Shahreza

In this work, we present a simple biometric indexing scheme which is binning and retrieving cancelable deep face templates based on frequent binary patterns. The simplicity of the proposed approach makes it applicable to unprotected as well as protected, i ...
IEEE2022

An HMM Approach with Inherent Model Selection for Sign Language and Gesture Recognition

Oya Aran, Sandrine Tornay

HMMs have been the one of the first models to be applied for sign recognition and have become the baseline models due to their success in modeling sequential and multivariate data. Despite the extensive use of HMMs for sign recognition, determining the HMM ...
ACL2020

Theoretical foundations of forward feature selection methods based on mutual information

Francisco Santos Paredes Quartin de Macedo

Feature selection problems arise in a variety of applications, such as microarray analysis, clinical prediction, text categorization, image classification and face recognition, multi-label learning, and classification of internet traffic. Among the various ...
ELSEVIER SCIENCE BV2019
Show more
Related MOOCs (2)
Introduction to Object-Oriented Programming in Java
Le cours suivi propose une introduction aux concepts de base de la programmation orientée objet tels que : encapsulation et abstraction, classes/objets, attributs/méthodes, héritage, polymorphisme, ..
Introduction to Object-Oriented Programming in C++
Le cours suivi propose une introduction aux concepts de base de la programmation orientée objet tels que : encapsulation et abstraction, classes/objets, attributs/méthodes, héritage, polymorphisme, ..

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.