Publication

A MAP Approach to Noise Compensation of Speech

Philip Neil Garner
2009
Report or working paper
Abstract

We show that estimation of parameters for the popular Gaussian model of speech in noise can be regularised in a Bayesian sense by use of simple prior distributions. For two example prior distributions, we show that the marginal distribution of the uncorrupted speech is non-Gaussian, but the parameter estimates themselves have tractable solutions. Speech recognition experiments serve to suggest values for hyper-parameters, and demonstrate that the theory is practically applicable.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.