Publication

Reverse Correlation for analyzing MLP Posterior Features in ASR

Hynek Hermansky, Joel Praveen Pinto
2008
Article de conférence
Résumé

In this work, we investigate the reverse correlation technique for analyzing posterior feature extraction using an multilayered perceptron trained on multi-resolution RASTA (MRASTA) features. The filter bank in MRASTA feature extraction is motivated by human auditory modeling. The MLP is trained based on an error criterion and is purely data driven. In this work, we analyze the functionality of the combined system using reverse correlation analysis.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (12)
Rank correlation
In statistics, a rank correlation is any of several statistics that measure an ordinal association—the relationship between rankings of different ordinal variables or different rankings of the same variable, where a "ranking" is the assignment of the ordering labels "first", "second", "third", etc. to different observations of a particular variable. A rank correlation coefficient measures the degree of similarity between two rankings, and can be used to assess the significance of the relation between them.
Tau de Kendall
En statistique, le tau de Kendall (ou de Kendall) est une statistique qui mesure l'association entre deux variables. Plus spécifiquement, le tau de Kendall mesure la corrélation de rang entre deux variables. Elle est nommée ainsi en hommage à Maurice Kendall qui en a développé l'idée dans un article de 1938 bien que Gustav Fechner ait proposé une idée similaire appliquée aux séries temporelles dès 1897. Soit un ensemble d'observations des variables jointes et tel que les valeurs des et sont uniques.
Critère d'information bayésien
Le critère d'information bayésien (en anglais bayesian information criterion, en abrégé BIC), aussi appelé critère d'information de Schwarz, est un critère d'information dérivé du critère d'information d'Akaike proposé par en 1978. À la différence du critère d'information d'Akaike, la pénalité dépend de la taille de l'échantillon et pas seulement du nombre de paramètres. Il s'écrit : avec la vraisemblance du modèle estimée, le nombre d'observations dans l'échantillon et le nombre de paramètres libres du modèle.
Afficher plus
Publications associées (9)

Partial discharge localization in power transformer tanks using machine learning methods

Marcos Rubinstein, Hamidreza Karami

This paper presents a comparison of machine learning (ML) methods used for three-dimensional localization of partial discharges (PD) in a power transformer tank. The study examines ML and deep learning (DL) methods, ranging from support vector machines (SV ...
2024

Evolution of Cortical and White Matter Lesion Load in Early-Stage Multiple Sclerosis: Correlation With Neuroaxonal Damage and Clinical Changes

Meritxell Bach Cuadra, Cristina Granziera, Guillaume Bonnier, Mario Joao Fartaria de Oliveira, Po-Jui Lu

Introduction:Changes in cortical and white matter lesion (CL, WML) load are pivotal metrics to diagnose and monitor multiple sclerosis patients. Yet, the relationship between (i) changes in CL/WML load and disease progression and between (ii) changes in CL ...
FRONTIERS MEDIA SA2020

A Recommender System Based on Belief Propagation over Pairwise Markov Random Fields

Erman Ayday

Recommender systems enable service providers to predict and address the individual needs of their customers so as to deliver personalized experiences. In this paper, we formulate the recommendation problem as an inference problem on a Pairwise Markov Rando ...
Ieee2013
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.