Rank correlationIn statistics, a rank correlation is any of several statistics that measure an ordinal association—the relationship between rankings of different ordinal variables or different rankings of the same variable, where a "ranking" is the assignment of the ordering labels "first", "second", "third", etc. to different observations of a particular variable. A rank correlation coefficient measures the degree of similarity between two rankings, and can be used to assess the significance of the relation between them.
Tau de KendallEn statistique, le tau de Kendall (ou de Kendall) est une statistique qui mesure l'association entre deux variables. Plus spécifiquement, le tau de Kendall mesure la corrélation de rang entre deux variables. Elle est nommée ainsi en hommage à Maurice Kendall qui en a développé l'idée dans un article de 1938 bien que Gustav Fechner ait proposé une idée similaire appliquée aux séries temporelles dès 1897. Soit un ensemble d'observations des variables jointes et tel que les valeurs des et sont uniques.
Critère d'information bayésienLe critère d'information bayésien (en anglais bayesian information criterion, en abrégé BIC), aussi appelé critère d'information de Schwarz, est un critère d'information dérivé du critère d'information d'Akaike proposé par en 1978. À la différence du critère d'information d'Akaike, la pénalité dépend de la taille de l'échantillon et pas seulement du nombre de paramètres. Il s'écrit : avec la vraisemblance du modèle estimée, le nombre d'observations dans l'échantillon et le nombre de paramètres libres du modèle.
Focused information criterionIn statistics, the focused information criterion (FIC) is a method for selecting the most appropriate model among a set of competitors for a given data set. Unlike most other model selection strategies, like the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the deviance information criterion (DIC), the FIC does not attempt to assess the overall fit of candidate models but focuses attention directly on the parameter of primary interest with the statistical analysis, say , for which competing models lead to different estimates, say for model .
Critère d'information d'AkaikeLe critère d'information d'Akaike, (en anglais Akaike information criterion ou AIC) est une mesure de la qualité d'un modèle statistique proposée par Hirotugu Akaike en 1973. Lorsque l'on estime un modèle statistique, il est possible d'augmenter la vraisemblance du modèle en ajoutant un paramètre. Le critère d'information d'Akaike, tout comme le critère d'information bayésien, permet de pénaliser les modèles en fonction du nombre de paramètres afin de satisfaire le critère de parcimonie.
Erreur quadratique moyenneEn statistiques, l’erreur quadratique moyenne d’un estimateur d’un paramètre de dimension 1 (mean squared error (), en anglais) est une mesure caractérisant la « précision » de cet estimateur. Elle est plus souvent appelée « erreur quadratique » (« moyenne » étant sous-entendu) ; elle est parfois appelée aussi « risque quadratique ».
Erreur typeLerreur type d'une statistique (souvent une estimation d'un paramètre) est l'écart type de sa distribution d'échantillonnage ou l'estimation de son écart type. Si le paramètre ou la statistique est la moyenne, on parle d'erreur type de la moyenne. La distribution d'échantillonnage est générée par tirage répété et enregistrements des moyennes obtenues. Cela forme une distribution de moyennes différentes, et cette distribution a sa propre moyenne et variance.
Système auditifLe système auditif est le système sensoriel du sens de l'ouïe. Il est composé de deux systèmes: le système auditif périphérique et le système auditif central. Dans le système auditif périphérique, on retrouve l’oreille externe, moyenne et interne. Le système auditif central comprend le nerf auditif jusqu’au cortex auditif. Le long de son trajet de l'extérieur jusqu'au cerveau antérieur, l'information sonore est conservée et en même temps modifiée de diverses manières.
Cortex auditifalt=Cortex auditifs primaire et secondaire|vignette|Cortex auditif. Le cortex auditif est la partie du cerveau qui analyse les informations auditives, c'est-à-dire les informations extraites des sons par l'ouïe. Il occupe la partie supérieure du lobe temporal. Comme d'autres aires sensorielles, le cortex auditif est organisé hiérarchiquement en aires primaires, secondaires et tertiaires qui sont anatomiquement organisées de façons concentriques dans les parties supérieures et moyennes du lobe temporal : le cortex primaire, localisé au niveau du gyrus de Heschl est entouré des aires secondaires, elles-mêmes encerclées d'aires tertiaires et associatives.
Consolidation informatiqueLa consolidation est en informatique le regroupement cohérent de données. Elle concerne généralement des données organisées logiquement ou liées entre elles. Plus spécifiquement pour les tableurs, il s’agit du regroupement de plusieurs tableaux issus de feuilles différentes (les feuilles sont des composantes des tableurs) voire de classeurs différents. La consolidation de données consiste à rassembler plusieurs données semblables afin d’obtenir un rapport plus facile à consulter que l’information brute présente sur le serveur, avec le moins de perte d’information possible.