In statistics, a rank correlation is any of several statistics that measure an ordinal association—the relationship between rankings of different ordinal variables or different rankings of the same variable, where a "ranking" is the assignment of the ordering labels "first", "second", "third", etc. to different observations of a particular variable. A rank correlation coefficient measures the degree of similarity between two rankings, and can be used to assess the significance of the relation between them. For example, two common nonparametric methods of significance that use rank correlation are the Mann–Whitney U test and the Wilcoxon signed-rank test. If, for example, one variable is the identity of a college basketball program and another variable is the identity of a college football program, one could test for a relationship between the poll rankings of the two types of program: do colleges with a higher-ranked basketball program tend to have a higher-ranked football program? A rank correlation coefficient can measure that relationship, and the measure of significance of the rank correlation coefficient can show whether the measured relationship is small enough to likely be a coincidence. If there is only one variable, the identity of a college football program, but it is subject to two different poll rankings (say, one by coaches and one by sportswriters), then the similarity of the two different polls' rankings can be measured with a rank correlation coefficient. As another example, in a contingency table with low income, medium income, and high income in the row variable and educational level—no high school, high school, university—in the column variable), a rank correlation measures the relationship between income and educational level. Some of the more popular rank correlation statistics include Spearman's ρ Kendall's τ Goodman and Kruskal's γ Somers' D An increasing rank correlation coefficient implies increasing agreement between rankings.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (4)
Tau de Kendall
En statistique, le tau de Kendall (ou de Kendall) est une statistique qui mesure l'association entre deux variables. Plus spécifiquement, le tau de Kendall mesure la corrélation de rang entre deux variables. Elle est nommée ainsi en hommage à Maurice Kendall qui en a développé l'idée dans un article de 1938 bien que Gustav Fechner ait proposé une idée similaire appliquée aux séries temporelles dès 1897. Soit un ensemble d'observations des variables jointes et tel que les valeurs des et sont uniques.
Variable ordinale
vignette|Exemple de représentation d’une variable ordinale : le niveau de certification par vignette Crit'Air. En statistique, une variable ordinale est une variable catégorielle dont les modalités sont totalement ordonnées, représentant chacune un niveau dans une gradation. Ces niveaux peuvent être codées par des lettres ou des chiffres sans que ceux-ci correspondent forcément à une grandeur numérique quantifiable, par exemple pour un degré de satisfaction, un grade militaire ou un numéro de version d’un logiciel.
Corrélation de Spearman
En statistique, la corrélation de Spearman ou rho de Spearman, nommée d'après Charles Spearman (1863-1945) et souvent notée par la lettre grecque (rho) ou est une mesure de dépendance statistique non paramétrique entre deux variables. La corrélation de Spearman est étudiée lorsque deux variables statistiques semblent corrélées sans que la relation entre les deux variables soit de type affine. Elle consiste à trouver un coefficient de corrélation, non pas entre les valeurs prises par les deux variables mais entre les rangs de ces valeurs.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.