Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Nanoparticles are finding many research and industrial applications, yet their characterization remains a challenge. Their cores are often polydisperse and coated by a stabilizing shell that varies in size and composition. No single technique can characterize both the size distribution and the nature of the shell. Advances in analytical ultracentrifugation allow for the extraction of the sedimentation (s) and diffusion coefficients (D). Here we report an approach to transform the s and D distributions of nanoparticles in solution into precise molecular weight (M), density (ρP) and particle diameter (dp) distributions. M for mixtures of discrete nanocrystals is found within 4% of the known quantities. The accuracy and the density information we achieve on nanoparticles are unparalleled. A single experimental run is sufficient for full nanoparticle characterization, without the need for standards or other auxiliary measurements. We believe that our method is of general applicability and we discuss its limitations.
Pierre Vandergheynst, Milos Vasic, Francesco Craighero, Renata Khasanova
Pierre Vandergheynst, Milos Vasic, Francesco Craighero, Renata Khasanova
, ,