Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
A 3D vertically stacked silicon nanowire (SiNW) field effect transistor featuring a high density array of fully depleted channels gated by a backgate and one or two symmetrical platinum side-gates through a liquid has been electrically characterized for their implementation into a robust biosensing system. The structures have also been characterized electrically under vacuum when completely surrounded by a thick oxide layer. When fully suspended, the SiNWs may be surrounded by a conformal high-K gate dielectric (HfO2) or silicon dioxide. The high density array of nanowires (up to 7 or 8 x 20 SiNWs in the vertical and horizontal direction, respectively) provides for high drive currents (1.3 mA/mu m, normalized to an average NW diameter of 30 nm at V-SG = 3 V, and V-d = 50 mV, for a standard structure with 7 x 10 NWs stacked) and high chances of biomolecule interaction and detection. The use of silicon on insulator substrates with a low doped device layer significantly reduces leakage currents for excellent I-on/I-off ratios >10(6) of particular importance for low power applications. When the nanowires are submerged in a liquid, they feature a gate all around architecture with improved electrostatics that provides steep subthreshold slopes (SS
Mihai Adrian Ionescu, Shokoofeh Sheibani