Publication

Radiation-Induced Charge Trapping in Shallow Trench Isolations of FinFETs

Federico Faccio
2024
Journal paper
Abstract

We provide comprehensive experimental data and technology computer-aided design (TCAD) simulations to clarify total-ionizing-dose mechanisms in 16-nm Si FinFETs. In n-channel FinFETs irradiated to ultrahigh doses, the transconductance evolution rebounds (increase up to 3-10 Mrad followed by a decrease), while the drain-to-source leakage current steadily augments until reaching a plateau at very large doses. These effects result from positive charge trapping deep in the sidewalls of the shallow trench isolation (STI) and negative trapped charge accumulation localized in the upper STI corners. Larger sizes of inter-fin STI enhance the leakage current degradation of transistors with smaller numbers of fins. Hydrogen-induced border- and/or interface-trap generation at the Si/oxide interface at the STI corners leads to increased low-frequency noise (LFN) at doses >10>{10} Mrad(SiO2). These results show that the quality of oxides and interfaces in the upper region of the STI adjacent to the device channel is crucial for the tolerance to ultrahigh radiation of modern FinFET technologies.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.