Publication

Network design of a transport system based on accelerating moving walkways

Abstract

Pollution, congestion and urbanistic considerations are leading to a change in the use of private vehicles in dense city centers. More frequently, the last-mile is covered with systems such as public transport, car sharing and bike sharing as well as an increase in walking and cycling. Following this trend, we assume a hypothetical scenario where the use of private cars is strongly limited in dense urban areas, and innovative transport modes must be used. This work investigates a futuristic system based on a network of accelerating moving walkways (AMW) to facilitate the movement of pedestrians in city centers where cars have been banned. Unlike constant speed moving walkways, AMWs can reach speeds of up to 15km/h thanks to an acceleration section. This paper presents a rigorous description of the system characteristics from a transportation point of view, develops a heuristic algorithm for the network design problem, and tests it on a real case study. Given a network of urban roads and an origin-destination demand, the optimization algorithm, which combines traffic assignment and supply modification, explores the trade-off curve between the total travel time and capital cost of the infrastructure. The results give practical insight on the possible dimensioning of the system, show the optimal network designs, and how these vary with a reduction of the available budget. This paper investigates for the first time the use of AMWs at a network scale, and provides results useful for analyzing the system feasibility. The results on travel time, investment budget and payback period indicates that AMWs could be an effective mode of transport in cities.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (44)
Intelligent transportation system
An intelligent transportation system (ITS) is an advanced application which aims to provide innovative services relating to different modes of transport and traffic management and enable users to be better informed and make safer, more coordinated, and 'smarter' use of transport networks. Some of these technologies include calling for emergency services when an accident occurs, using cameras to enforce traffic laws or signs that mark speed limit changes depending on conditions.
Transportation forecasting
Transportation forecasting is the attempt of estimating the number of vehicles or people that will use a specific transportation facility in the future. For instance, a forecast may estimate the number of vehicles on a planned road or bridge, the ridership on a railway line, the number of passengers visiting an airport, or the number of ships calling on a seaport. Traffic forecasting begins with the collection of data on current traffic. This traffic data is combined with other known data, such as population, employment, trip rates, travel costs, etc.
Public transport
Public transport (also known as public transportation, public transit, mass transit, or simply transit) is a system of transport for passengers by group travel systems available for use by the general public unlike private transport, typically managed on a schedule, operated on established routes, and that charge a posted fee for each trip. There is no rigid definition of which kinds of transport are included, and air travel is often not thought of when discussing public transport—dictionaries use wording like "buses, trains, etc.
Show more
Related publications (75)

Demand-based operations of vehicle sharing systems

Selin Ataç

Vehicle sharing systems (VSSs) allow users to rent vehicles for a short period of time, in a more flexible and convenient manner compared to the traditional vehicle rental services. The long-term VSS subscription replaces the need for contract signing for ...
EPFL2023

Optimizing the utilization of existing vehicle flows in last-mile passenger transport and logistics systems

Patrick Stefan Adriaan Stokkink

The new era of shared economy has raised our expectations to make mobility more sustainable through better utilization of existing resources and capacity. In this thesis, we focus on the design of transport systems that stimulate multi-purpose trips with t ...
EPFL2023

A continuum approximation approach to the depot location problem in a crowd-shipping system

Nikolaos Geroliminis, Patrick Stefan Adriaan Stokkink

Last-mile delivery in the logistics chain contributes to congestion in urban networks due to frequent stops. Crowd-shipping is a sustainable and low-cost alternative to traditional delivery but relies heavily on the availability of occasional couriers. In ...
PERGAMON-ELSEVIER SCIENCE LTD2023
Show more
Related MOOCs (27)
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Optimization: principles and algorithms - Linear optimization
Introduction to linear optimization, duality and the simplex algorithm.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.