Publication

MATHICSE Technical Report : Fast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantification

Fabio Nobile, Yoshihito Kazashi
2020
Report or working paper
Abstract

This paper deals with the kernel-based approximation of a multivariate periodic function by interpolation at the points of an integration lattice---a setting that, as pointed out by Zeng, Leung, Hickernell (MCQMC2004, 2006) and Zeng, Kritzer, Hickernell (Constr. Approx., 2009), allows fast evaluation by fast Fourier transform, so avoiding the need for a linear solver. The main contribution of the paper is the application to the approximation problem for uncertainty quantification of elliptic partial differential equations, with the diffusion coefficient given by a random field that is periodic in the stochastic variables, in the model proposed recently by Kaarnioja, Kuo, Sloan (SIAM J. Numer. Anal., 2020). The paper gives a full error analysis, and full details of the construction of lattices needed to ensure a good (but inevitably not optimal) rate of convergence and an error bound independent of dimension. Numerical experiments support the theory.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.