Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Adjoint-based sensitivity analysis is routinely used today to assess efficiently the effect of open-loop control on the linear stability properties of unstable flows. Sensitivity maps identify regions where small-amplitude control is the most effective, i.e. yields the largest first-order (linear) eigenvalue variation. In this study an adjoint method is proposed for computing a second-order (quadratic) sensitivity operator, and applied to the flow past a circular cylinder, controlled with a steady body force or a passive device model. Maps of second-order eigenvalue variations are obtained, without computing controlled base flows and eigenmodes. For finite control amplitudes, the second-order analysis improves the accuracy of the first-order prediction, and informs about its range of validity, and whether it underestimates or overestimates the actual eigenvalue variation. Regions are identified where control has little or no first-order effect but a second-order effect. In the cylinder wake, the effect of a control cylinder tends to be underestimated by the first-order sensitivity, and including second-order effects yields larger regions of flow restabilisation. Second-order effects can be decomposed into two mechanisms: second-order base flow modification, and interaction between first-order modifications of the base flow and eigenmode. Both contribute equally in general in sensitive regions of the cylinder wake. Exploiting the second-order sensitivity operator, the optimal control maximising the total second-order stabilisation is computed via a quadratic eigenvalue problem. The approach is applicable to other types of control (e.g. wall blowing/suction and shape deformation) and other eigenvalue problems (e.g. amplification of time-harmonic perturbations, or resolvent gain, in stable flows).
Daniel Kressner, Ivana Sain Glibic
,