Publication

JPEG XS-A New Standard for Visually Lossless Low-Latency Lightweight Image Coding

Touradj Ebrahimi
2021
Journal paper
Abstract

Joint Photographic Experts Group (JPEG) XS is a new International Standard from the JPEG Committee (formally known as ISO/International Electrotechnical Commission (IEC) JTC1/SC29/WG1). It defines an interoperable, visually lossless low-latency lightweight image coding that can be used for mezzanine compression within any AV market. Among the targeted use cases, one can cite video transport over professional video links (serial digital interface (SDI), internet protocol (IP), and Ethernet), real-time video storage, memory buffers, omnidirectional video capture and rendering, and sensor compression (for example, in cameras and the automotive industry). The core coding system is composed of an optional color transform, a wavelet transform, and a novel entropy encoder, processing groups of coefficients by coding their magnitude level and packing the magnitude refinement. Such a design allows for visually transparent quality at moderate compression ratios, scalable end-to-end latency that ranges from less than one line to a maximum of 32 lines of the image, and a low-complexity real-time implementation in application-specific integrated circuit (ASIC), field-programmable gate array (FPGA), central processing unit (CPU), and graphics processing unit (GPU). This article details the key features of this new standard and the profiles and formats that have been defined so far for the various applications. It also gives a technical description of the core coding system. Finally, the latest performance evaluation results of recent implementations of the standard are presented, followed by the current status of the ongoing standardization process and future milestones.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (40)
Graphics processing unit
A graphics processing unit (GPU) is a specialized electronic circuit initially designed to accelerate computer graphics and (either on a video card or embedded on the motherboards, mobile phones, personal computers, workstations, and game consoles). After their initial design, GPUs were found to be useful for non-graphic calculations involving embarrassingly parallel problems due to their parallel structure. Other non-graphical uses include the training of neural networks and cryptocurrency mining.
Central processing unit
A central processing unit (CPU)—also called a central processor or main processor—is the most important processor in a given computer. Its electronic circuitry executes instructions of a computer program, such as arithmetic, logic, controlling, and input/output (I/O) operations. This role contrasts with that of external components, such as main memory and I/O circuitry, and specialized coprocessors such as graphics processing units (GPUs). The form, design, and implementation of CPUs have changed over time, but their fundamental operation remains almost unchanged.
General-purpose computing on graphics processing units
General-purpose computing on graphics processing units (GPGPU, or less often GPGP) is the use of a graphics processing unit (GPU), which typically handles computation only for computer graphics, to perform computation in applications traditionally handled by the central processing unit (CPU). The use of multiple video cards in one computer, or large numbers of graphics chips, further parallelizes the already parallel nature of graphics processing.
Show more
Related publications (82)

Automatic and high-precision microseismic monitoring of progressive failure prior, during, and after tunnel excavation

Brice Tanguy Alphonse Lecampion, Seyyedmaalek Momeni, Christophe Nussbaum

Acoustic emission (AE) monitoring is commonly used to inspect the health of a structure continuously. During fracture processes elastic waves of AE are created and emitted, and sensors can capture these waves. The acquired signals can be processed to track ...
2023

On the Fusion Strategies for Federated Decision Making

Ali H. Sayed, Emre Telatar, Mert Kayaalp, Yunus Inan

We consider the problem of information aggregation in federated decision making, where a group of agents collaborate to infer the underlying state of nature without sharing their private data with the central processor or each other. We analyze the non-Bay ...
2023

GLeeFuzz: FuzzingWebGL Through Error Message Guided Mutation

Mathias Josef Payer, Hui Peng

WebGL is a set of standardized JavaScript APIs for GPU accelerated graphics. Security of the WebGL interface is paramount because it exposes remote and unsandboxed access to the underlying graphics stack (including the native GL libraries and GPU drivers) ...
Berkeley2023
Show more