Publication

Decoding of error-related potentials in continuous feedback protocols for personalized human computer interaction

Fumiaki Iwane
2021
Thèse EPFL
Résumé

The ability to notice erroneous behavior is crucial for effective training. Within the framework of neuroprosthetics, numerous studies in electroencephalography (EEG) confirm the existence of neural correlates when humans perceive the erroneous actions of the device. Subsequently, the decoding of this correlate has been used to correct the erroneous behavior performed by the agent or to tune the behavioral strategy of the agent, among others. However, a main limitation of current approaches is that the actions of the agent were discretized, thus restraining the usability of such systems. The main objective of this PhD study is to study, and decode, the neural correlates of error evaluation under continuous trajectories performed by external agents; and to use this decoding to tune the continuous behavior of the agent for individual users. To accomplish this goal, two essential questions will be investigated: (i) whether it is possible to infer individual preference under continuous state-action scenarios, and (ii) how to create a reliable decoding pipeline in a continuous fashion. Results obtained during the first year of the PhD have confirmed the existence of such correlates under continuous motions of a robotic arm. Furthermore, such correlates encode individual preferences, indicating that the neural prosthesis can be also customized for individual users, which may play an important rule to increase the quality of brain-computer based assistance. This property not only will increase the level of perceived assistance provided by a brain-computer interface, but also may facilitate embodiment of the brain-controlled device.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.