Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
A convex parameterization of internally stabilizing controllers is fundamental for many controller synthesis procedures. The celebrated Youla parameterization relies on a doubly coprime factorization of the system, while the recent system-level and input-output parametrizations require no doubly coprime factorization, but a set of equality constraints for achievable closed-loop responses. In this article, we present explicit affine mappings among Youla, system-level, and input-output parameterizations. Two direct implications of these affine mappings are: 1) any convex problem in the Youla, system-level, or input-output parameters can be equivalently and convexly formulated in any other one of these frameworks, including the convex system-level synthesis; 2) the condition of quadratic invariance is sufficient and necessary for the classical distributed control problem to admit an equivalent convex reformulation in terms of either Youla, system-level, or input-output parameters. © 1963-2012 IEEE.
Volkan Cevher, Maria-Luiza Vladarean
Alireza Karimi, Philippe Louis Schuchert
Alireza Karimi, Elias Sebastian Klauser