Publication

Periodic orbits exhibit oblique stripe patterns in plane Couette flow

Tobias Schneider, Florian Reetz
2021
Journal paper
Abstract

Spatiotemporally chaotic dynamics of transitional plane Couette flow may give rise to regular turbulent-laminar stripe patterns with a large-scale pattern wavelength and an oblique orientation relative to the laminar flow direction. A recent dynamical systems analysis of the oblique stripe pattern demonstrated that the Navier-Stokes equations have unstable equilibrium solutions that capture the three-dimensional spatial structure of the oblique stripe patterns. While equilibrium solutions are embedded in the turbulence supporting set and capture spatial features of the flow, a description of the dynamics requires evolving time-periodic solutions. These periodic orbits are unstable, expected to lie dense in the invariant set supporting turbulence, are shadowed by the chaotic trajectory and may allow for a quantitative description of turbulent statistics via periodic orbit expansions. Here we identify unstable periodic orbits that not only show oblique large-scale amplitude modulation in space but also have a characteristic time evolution. The periodic orbits represent standing waves that slowly propagate across wavy velocity streaks in the flow on viscous diffusion timescales. The unstable periodic orbits are embedded in the edge of chaos in a symmetry subspace of plane Couette flow and thereby may mediate transition to and from turbulent flows with oblique patterns.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (40)
Chaos theory
Chaos theory is an interdisciplinary area of scientific study and branch of mathematics focused on underlying patterns and deterministic laws of dynamical systems that are highly sensitive to initial conditions, and were once thought to have completely random states of disorder and irregularities. Chaos theory states that within the apparent randomness of chaotic complex systems, there are underlying patterns, interconnection, constant feedback loops, repetition, self-similarity, fractals, and self-organization.
Laminar flow
In fluid dynamics, laminar flow (ˈlæmənər) is characterized by fluid particles following smooth paths in layers, with each layer moving smoothly past the adjacent layers with little or no mixing. At low velocities, the fluid tends to flow without lateral mixing, and adjacent layers slide past one another like playing cards. There are no cross-currents perpendicular to the direction of flow, nor eddies or swirls of fluids. In laminar flow, the motion of the particles of the fluid is very orderly with particles close to a solid surface moving in straight lines parallel to that surface.
Turbulence
In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between those layers. Turbulence is commonly observed in everyday phenomena such as surf, fast flowing rivers, billowing storm clouds, or smoke from a chimney, and most fluid flows occurring in nature or created in engineering applications are turbulent.
Show more
Related publications (63)

Identifying invariant solutions of wall-bounded three-dimensional shear flows using robust adjoint-based variational techniques

Tobias Schneider, Omid Ashtari

Invariant solutions of the Navier-Stokes equations play an important role in the spatiotemporally chaotic dynamics of turbulent shear flows. Despite the significance of these solutions, their identification remains a computational challenge, rendering many ...
Cambridge2023

Anomalous Dissipation and Lack of Selection in the Obukhov-Corrsin Theory of Scalar Turbulence

Maria Colombo, Massimo Sorella

The Obukhov-Corrsin theory of scalar turbulence [21, 54] advances quantitative predictions on passive-scalar advection in a turbulent regime and can be regarded as the analogue for passive scalars of Kolmogorov's K41 theory of fully developed turbulence [4 ...
London2023

From thin plates to Ahmed bodies: linear and weakly nonlinear stability of rectangular prisms

Edouard Boujo, Giuseppe Antonio Zampogna

We study the stability of laminar wakes past three-dimensional rectangular prisms. The width-to-height ratio is set to W/H = 1.2, while the length-to-height ratio 1/6 < L/H < 3 covers a wide range of geometries from thin plates to elongated Ahmed bodies. F ...
CAMBRIDGE UNIV PRESS2023
Show more
Related MOOCs (11)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more