Publication

Cardinal Exponential Splines: Part II—Think Analog, Act Digital

Michaël Unser
2005
Journal paper
Abstract

By interpreting the Green-function reproduction property of exponential splines in signal processing terms, we uncover a fundamental relation that connects the impulse responses of allpole analog filters to their discrete counterparts. The link is that the latter are the B-spline coefficients of the former (which happen to be exponential splines). Motivated by this observation, we introduce an extended family of cardinal splines—the generalized E-splines—to generalize the concept for all convolution operators with rational transfer functions. We construct the corresponding compactly-supported B-spline basis functions, which are characterized by their poles and zeros, thereby establishing an interesting connection with analog filter design techniques. We investigate the properties of these new B-splines and present the corresponding signal processing calculus, which allows us to perform continuous-time operations, such as convolution, differential operators, and modulation, by simple application of the discrete version of these operators in the B-spline domain. In particular, we show how the formalism can be used to obtain exact, discrete implementations of analog filters. Finally, we apply our results to the design of hybrid signal processing systems that rely on digital filtering to compensate for the nonideal characteristics of real-world analog-to-digital (A-to-D) and D-to-A conversion systems.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Filter (signal processing)
In signal processing, a filter is a device or process that removes some unwanted components or features from a signal. Filtering is a class of signal processing, the defining feature of filters being the complete or partial suppression of some aspect of the signal. Most often, this means removing some frequencies or frequency bands. However, filters do not exclusively act in the frequency domain; especially in the field of many other targets for filtering exist.
Digital filter
In signal processing, a digital filter is a system that performs mathematical operations on a sampled, discrete-time signal to reduce or enhance certain aspects of that signal. This is in contrast to the other major type of electronic filter, the analog filter, which is typically an electronic circuit operating on continuous-time analog signals. A digital filter system usually consists of an analog-to-digital converter (ADC) to sample the input signal, followed by a microprocessor and some peripheral components such as memory to store data and filter coefficients etc.
Reconstruction filter
In a mixed-signal system (analog and digital), a reconstruction filter, sometimes called an anti-imaging filter, is used to construct a smooth analog signal from a digital input, as in the case of a digital to analog converter (DAC) or other sampled data output device. The sampling theorem describes why the input of an ADC requires a low-pass analog electronic filter, called the anti-aliasing filter: the sampled input signal must be bandlimited to prevent aliasing (here meaning waves of higher frequency being recorded as a lower frequency).
Show more
Related publications (71)

Text as signal. A tutorial with case studies focusing on social media (Twitter)

Erick Jorge Canales Rodriguez

Sentiment analysis is the automated coding of emotions expressed in text. Sentiment analysis and other types of analyses focusing on the automatic coding of textual documents are increasingly popular in psychology and computer science. However, the potenti ...
SPRINGER2022

Electrical Signal Modeling in Cochlear Implants. Study of Temperature and Humidity Effects

Maria-Alexandra Paun

The present paper discusses the climatic effects of humidity and temperature on cochlear implant functioning and the quality of the electrical sound signal. MATLAB Simulink simulations were prepared, offering insights into signal behavior under such climat ...
MDPI2021

A 49 mu W 6th-Order Chebyshev SSF-based Low-Pass Analog Filter for IEEE 802.11ax

Christian Enz, Alessandro Pezzotta, Daniel Mathias Bold, Salvatore Collura

In this paper a continuous-time low-pass analog filter based on the Cascoded Super Source Follower (C-SSF) architecture, implemented in a 28-nm bulk CMOS process, is presented. The target application is the transceiver analog baseband for the next-generati ...
IEEE2020
Show more
Related MOOCs (8)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.