In thermodynamics, heat is the thermal energy transferred between systems due to a temperature difference. In colloquial use, heat sometimes refers to thermal energy itself.
An example of formal vs. informal usage may be obtained from the right-hand photo, in which the metal bar is "conducting heat" from its hot end to its cold end, but if the metal bar is considered a thermodynamic system, then the energy flowing within the metal bar is called internal energy, not heat. The hot metal bar is also transferring heat to its surroundings, a correct statement for both the strict and loose meanings of heat. Another example of informal usage is the term heat content, used despite the fact that physics defines heat as energy transfer. More accurately, it is thermal energy that is contained in the system or body, as it is stored in the microscopic degrees of freedom of the modes of vibration.
Heat is energy in transfer to or from a thermodynamic system, by a mechanism that involves the microscopic atomic modes of motion or the corresponding macroscopic properties. This descriptive characterization excludes the transfers of energy by thermodynamic work or mass transfer. Defined quantitatively, the heat involved in a process is the difference in internal energy between the final and initial states of a system, and subtracting the work done in the process. This is the formulation of the first law of thermodynamics.
The measurement of energy transferred as heat is called calorimetry, performed by measuring its effect on the states of interacting bodies. For example, heat can be measured by the amount of ice melted, or by change in temperature of a body in the surroundings of the system.
In the International System of Units (SI) the unit of measurement for heat, as a form of energy, is the joule (J).
As a form of energy, heat has the unit joule (J) in the International System of Units (SI). In addition, many applied branches of engineering use other, traditional units, such as the British thermal unit (BTU) and the calorie.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In thermodynamics, an exothermic process () is a thermodynamic process or reaction that releases energy from the system to its surroundings, usually in the form of heat, but also in a form of light (e.g. a spark, flame, or flash), electricity (e.g. a battery), or sound (e.g. explosion heard when burning hydrogen). The term exothermic was first coined by 19th-century French chemist Marcellin Berthelot. The opposite of an exothermic process is an endothermic process, one that absorbs energy usually in the form of heat.
In thermochemistry, an endothermic process () is any thermodynamic process with an increase in the enthalpy H (or internal energy U) of the system. In such a process, a closed system usually absorbs thermal energy from its surroundings, which is heat transfer into the system. Thus, an endothermic reaction generally leads to an increase in the temperature of the system and a decrease in that of the surroundings. It may be a chemical process, such as dissolving ammonium nitrate () in water (), or a physical process, such as the melting of ice cubes.
Chemical changes occur when a substance combines with another to form a new substance, called chemical synthesis or, alternatively, chemical decomposition into two or more different substances. These processes are called chemical reactions and, in general, are not reversible except by further chemical reactions. Some reactions produce heat and are called exothermic reactions and others may require heat to enable the reaction to occur, which are called endothermic reactions.
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
Familiarization with practical aspects encountered in chemical reaction engineering.
A research project is carried out along twelve weeks where a close interaction is required between the different g
The theoretical background and practical aspects of heterogeneous reactions including the basic knowledge of heterogeneous catalysis are introduced. The fundamentals are given to allow the design of m
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
A physical quantity (or simply quantity) is a property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a value, which is the algebraic multiplication of a numerical value and a unit of measurement. For example, the physical quantity mass, symbol m, can be quantified as m=n kg, where n is the numerical value and kg is the unit symbol (for kilogram). Following ISO 80000-1, any value or magnitude of a physical quantity is expressed as a comparison to a unit of that quantity.
In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, and neuroscience.
Air conditioning, often abbreviated as A/C (US), AC (US), or air con (UK), is the process of removing heat from an enclosed space to achieve a more comfortable interior environment (sometimes referred to as "comfort cooling") and in some cases also strictly controlling the humidity of internal air. Air conditioning can be achieved using a mechanical air conditioner or alternatively a variety of other methods, including passive cooling or ventilative cooling.
Explores observed rates in heterogeneous reactions, internal mass transfer impact, reaction kinetics, Arrhenius equation, and heat transfer effects.
Covers the basics of thermodynamics, including enthalpy, entropy, and spontaneity.
Explores thermodynamics principles, enthalpy, reactions, and Hess's law in chemical systems.
In this paper, we consider experimental data available for graphene-based nanolubricants to evaluate their convective heat transfer performance by means of computational fluid dynamics (CFD) simulations. Single-phase models with temperature-dependent prope ...
We report measurements of the in-plane thermoelectric power (TEP) for an overdoped (OD) crystal of the single layer cuprate superconductor Tl2Ba2CuO6+x (Tl2201) at several hole concentrations (p), from 300 or 400 K to below the superconducting transition t ...
Bristol2024
The time-honored Allen -Feldman theory of heat transport in glasses is generally assumed to predict a finite value for the thermal conductivity, even if it neglects the anharmonic broadening of vibrational normal modes. We demonstrate that the harmonic app ...