Summary
Artificial neural network Spiking neural networks (SNNs) are artificial neural networks that more closely mimic natural neural networks. In addition to neuronal and synaptic state, SNNs incorporate the concept of time into their operating model. The idea is that neurons in the SNN do not transmit information at each propagation cycle (as it happens with typical multi-layer perceptron networks), but rather transmit information only when a membrane potential—an intrinsic quality of the neuron related to its membrane electrical charge—reaches a specific value, called the threshold. When the membrane potential reaches the threshold, the neuron fires, and generates a signal that travels to other neurons which, in turn, increase or decrease their potentials in response to this signal. A neuron model that fires at the moment of threshold crossing is also called a spiking neuron model. The most prominent spiking neuron model is the leaky integrate-and-fire model. In the integrate-and-fire model, the momentary activation level (modeled as a differential equation) is normally considered to be the neuron's state, with incoming spikes pushing this value higher or lower, until the state eventually either decays or—if the firing threshold is reached—the neuron fires. After firing, the state variable is reset to a lower value. Various decoding methods exist for interpreting the outgoing spike train as a real-value number, relying on either the frequency of spikes (rate-code), the time-to-first-spike after stimulation, or the interval between spikes. Many multi-layer artificial neural networks are fully connected, receiving input from every neuron in the previous layer and signalling every neuron in the subsequent layer. Although these networks have achieved breakthroughs in many fields, they are biologically inaccurate and do not mimic the operation mechanism of neurons in the brain of a living thing. Biological neuron model The biologically inspired Hodgkin–Huxley model of a spiking neuron was proposed in 1952.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (11)
NX-450: Computational neurosciences: biophysics
The course introduces students to a synthesis of modern neuroscience and state-of-the-art data management, modelling and computing technologies with a focus on the biophysical level.
NX-421: Neural signals and signal processing
Understanding, processing, and analysis of signals and images obtained from the central and peripheral nervous system
EE-519: Bioelectronics and biomedical microelectronics
The course covers the fundaments of bioelectronics and integrated microelectronics for biomedical and implantable systems. Issues and trade-offs at the circuit and systems levels of invasive microelec
Show more
Related concepts (10)
Models of neural computation
Models of neural computation are attempts to elucidate, in an abstract and mathematical fashion, the core principles that underlie information processing in biological nervous systems, or functional components thereof. This article aims to provide an overview of the most definitive models of neuro-biological computation as well as the tools commonly used to construct and analyze them.
Bio-inspired computing
Bio-inspired computing, short for biologically inspired computing, is a field of study which seeks to solve computer science problems using models of biology. It relates to connectionism, social behavior, and emergence. Within computer science, bio-inspired computing relates to artificial intelligence and machine learning. Bio-inspired computing is a major subset of natural computation. Early Ideas The ideas behind biological computing trace back to 1936 and the first description of an abstract computer, which is now known as a Turing machine.
Biological neuron model
Biological neuron models, also known as a spiking neuron models, are mathematical descriptions of the properties of certain cells in the nervous system that generate sharp electrical potentials across their cell membrane, roughly one millisecond in duration, called action potentials or spikes (Fig. 2). Since spikes are transmitted along the axon and synapses from the sending neuron to many other neurons, spiking neurons are considered to be a major information processing unit of the nervous system.
Show more
Related MOOCs (21)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Show more