In mathematics, the classical groups are defined as the special linear groups over the reals R, the complex numbers C and the quaternions H together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Hermann Weyl, it being the title of his 1939 monograph The Classical Groups. The classical groups form the deepest and most useful part of the subject of linear Lie groups. Most types of classical groups find application in classical and modern physics. A few examples are the following. The rotation group SO(3) is a symmetry of Euclidean space and all fundamental laws of physics, the Lorentz group O(3,1) is a symmetry group of spacetime of special relativity. The special unitary group SU(3) is the symmetry group of quantum chromodynamics and the symplectic group Sp(m) finds application in Hamiltonian mechanics and quantum mechanical versions of it. The classical groups are exactly the general linear groups over R, C and H together with the automorphism groups of non-degenerate forms discussed below. These groups are usually additionally restricted to the subgroups whose elements have determinant 1, so that their centers are discrete. The classical groups, with the determinant 1 condition, are listed in the table below. In the sequel, the determinant 1 condition is not used consistently in the interest of greater generality. The complex classical groups are SL(n, C), SO(n, C) and Sp(n, C). A group is complex according to whether its Lie algebra is complex.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (31)
AR-219: Advanced CAO and Integrated Modeling DIM
1ère année: bases nécessaires à la représentation informatique 2D (3D). Passage d'un à plusieurs logiciels: compétence de choisir les outils adéquats en 2D et en 3D. Mise en relation des outils de CAO
CS-308: Introduction to quantum computation
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
MATH-225: Topology II - fundamental groups
On étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre
Show more
Related lectures (100)
Groups and Numbers: Mathematical Elements on Groups
Explores fundamental properties of groups and numbers, emphasizing equivalence classes and subgroup concepts.
Fundamental Groups
Explores fundamental groups, homotopy classes, and coverings in connected manifolds.
Differential Amplifier Design
Covers the design of a differential amplifier with key parameters like gain and bias current.
Show more
Related publications (135)

Social life of campus public spaces: Experimental study on the role of temporary interventions in fostering social activity

Ankita Singhvi, Kazuki Sakamoto

Our experimental study built on a tradition of quantitative urbanism, updating it to reflect recent developments in computer vision. We used cameras to track an area of Avenue Piccard in its current state, then intervened with temporary furniture such as o ...
2023

Duality and bicrystals on infinite binary matrices

Thomas Gerber

The set of finite binary matrices of a given size is known to carry a finite type AA bicrystal structure. We first review this classical construction, explain how it yields a short proof of the equality between Kostka polynomials and one-dimensional sums t ...
2023
Show more
Related MOOCs (12)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.