In operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations. Since then, positive-definite functions and their various analogues and generalizations have arisen in diverse parts of mathematics. They occur naturally in Fourier analysis, probability theory, operator theory, complex function-theory, moment problems, integral equations, boundary-value problems for partial differential equations, machine learning, embedding problem, information theory, and other areas. Let be a nonempty set, sometimes referred to as the index set. A symmetric function is called a positive-definite (p.d.) kernel on if holds for any , given . In probability theory, a distinction is sometimes made between positive-definite kernels, for which equality in (1.1) implies , and positive semi-definite (p.s.d.) kernels, which do not impose this condition. Note that this is equivalent to requiring that any finite matrix constructed by pairwise evaluation, , has either entirely positive (p.d.) or nonnegative (p.s.d.) eigenvalues. In mathematical literature, kernels are usually complex valued functions, but in this article we assume real-valued functions, which is the common practice in applications of p.d. kernels. For a family of p.d. kernels The conical sum is p.d., given The product is p.d., given The limit is p.d. if the limit exists. If is a sequence of sets, and a sequence of p.d. kernels, then both and are p.d. kernels on . Let . Then the restriction of to is also a p.d. kernel. Common examples of p.d. kernels defined on Euclidean space include: Linear kernel: . Polynomial kernel: . Gaussian kernel (RBF kernel): . Laplacian kernel: . Abel kernel: . Kernel generating Sobolev spaces : , where is the Bessel function of the third kind. Kernel generating Paley–Wiener space: . If is a Hilbert space, then its corresponding inner product is a p.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (20)
MATH-520: Topics in machine learning
Mathematical analysis of modern supervised machine learning techniques, from linear methods to artificial neural networks.
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
Show more
Related lectures (66)
Mercer Theorem and Kernels
Explores the Mercer Theorem, Kernels, and their role in machine learning applications.
Incremental Regression: LWPR
Explores incremental learning with LWPR, discussing challenges, synthetic data, real-world applications, and the LWPR algorithm.
Feature Maps and Kernels
Covers feature maps, Representer theorem, kernels, and RKHS in machine learning.
Show more
Related publications (71)

High-Dimensional Kernel Methods under Covariate Shift: Data-Dependent Implicit Regularization

Volkan Cevher, Fanghui Liu

This paper studies kernel ridge regression in high dimensions under covariate shifts and analyzes the role of importance re-weighting. We first derive the asymptotic expansion of high dimensional kernels under covariate shifts. By a bias-variance decomposi ...
2024

Density Estimation In Rkhs With Application To Korobov Spaces In High Dimensions

Fabio Nobile, Yoshihito Kazashi

A kernel method for estimating a probability density function from an independent and identically distributed sample drawn from such density is presented. Our estimator is a linear combination of kernel functions, the coefficients of which are determined b ...
SIAM PUBLICATIONS2023

The Completion Of Covariance Kernels

Victor Panaretos, Kartik Waghmare

We consider the problem of positive-semidefinite continuation: extending a partially specified covariance kernel from a subdomain Omega of a rectangular domain I x I to a covariance kernel on the entire domain I x I. For a broad class of domains Omega call ...
INST MATHEMATICAL STATISTICS-IMS2022
Show more
Related concepts (3)
Kernel method
In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. The general task of pattern analysis is to find and study general types of relations (for example clusters, rankings, principal components, correlations, classifications) in datasets.
Kriging
In statistics, originally in geostatistics, kriging or Kriging, (pronounced /ˌˈkɹiːɡɪŋ/) also known as Gaussian process regression, is a method of interpolation based on Gaussian process governed by prior covariances. Under suitable assumptions of the prior, kriging gives the best linear unbiased prediction (BLUP) at unsampled locations. Interpolating methods based on other criteria such as smoothness (e.g., smoothing spline) may not yield the BLUP. The method is widely used in the domain of spatial analysis and computer experiments.
Integral transform
In mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the inverse transform. An integral transform is any transform of the following form: The input of this transform is a function , and the output is another function .
Related MOOCs (4)
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.