In mathematics, a simplicial set is an object composed of simplices in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and . Formally, a simplicial set may be defined as a contravariant functor from the to the . Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber.
Every simplicial set gives rise to a "nice" topological space, known as its geometric realization. This realization consists of geometric simplices, glued together according to the rules of the simplicial set. Indeed, one may view a simplicial set as a purely combinatorial construction designed to capture the essence of a "well-behaved" topological space for the purposes of homotopy theory. Specifically, the category of simplicial sets carries a natural , and the corresponding is equivalent to the familiar homotopy category of topological spaces.
Simplicial sets are used to define , a basic notion of . A construction analogous to that of simplicial sets can be carried out in any category, not just in the category of sets, yielding the notion of simplicial objects.
A simplicial set is a categorical (that is, purely algebraic) model capturing those topological spaces that can be built up (or faithfully represented up to homotopy) from simplices and their incidence relations. This is similar to the approach of CW complexes to modeling topological spaces, with the crucial difference that simplicial sets are purely algebraic and do not carry any actual topology.
To get back to actual topological spaces, there is a geometric realization functor which turns simplicial sets into compactly generated Hausdorff spaces. Most classical results on CW complexes in homotopy theory are generalized by analogous results for simplicial sets. While algebraic topologists largely continue to prefer CW complexes, there is a growing contingent of researchers interested in using simplicial sets for applications in algebraic geometry where CW complexes do not naturally exist.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
In this reading group, we will work together through recent important papers in applied topology.
Participants will take turns presenting articles, then leading a discussion of the contents.
In mathematics, particularly in homotopy theory, a model category is a with distinguished classes of morphisms ('arrows') called 'weak equivalences', 'fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes ( theory). The concept was introduced by . In recent decades, the language of model categories has been used in some parts of algebraic K-theory and algebraic geometry, where homotopy-theoretic approaches led to deep results.
In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex. For example, in a 2-dimensional simplicial complex, the sets in the family are the triangles (sets of size 3), their edges (sets of size 2), and their vertices (sets of size 1).
In mathematics, specifically in homotopy theory, a classifying space BG of a topological group G is the quotient of a weakly contractible space EG (i.e., a topological space all of whose homotopy groups are trivial) by a proper free action of G. It has the property that any G principal bundle over a paracompact manifold is isomorphic to a pullback of the principal bundle EG → BG. As explained later, this means that classifying spaces represent a set-valued functor on the of topological spaces.
The field of computational topology has developed many powerful tools to describe the shape of data, offering an alternative point of view from classical statistics. This results in a variety of complex structures that are not always directly amenable for ...
Simplicial Kuramoto models have emerged as a diverse and intriguing class of models describing oscillators on simplices rather than nodes. In this paper, we present a unified framework to describe different variants of these models, categorized into three ...
Phase synchronizations in models of coupled oscillators such as the Kuramoto model have been widely studied with pairwise couplings on arbitrary topologies, showing many unexpected dynamical behaviors. Here, based on a recent formulation the Kuramoto model ...