In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures have been generalized for all complex varieties (even if they are singular and non-complete) in the form of mixed Hodge structures, defined by Pierre Deligne (1970). A variation of Hodge structure is a family of Hodge structures parameterized by a manifold, first studied by Phillip Griffiths (1968). All these concepts were further generalized to mixed Hodge modules over complex varieties by Morihiko Saito (1989).
A pure Hodge structure of integer weight n consists of an abelian group and a decomposition of its complexification H into a direct sum of complex subspaces , where , with the property that the complex conjugate of is :
An equivalent definition is obtained by replacing the direct sum decomposition of H by the Hodge filtration, a finite decreasing filtration of H by complex subspaces subject to the condition
The relation between these two descriptions is given as follows:
For example, if X is a compact Kähler manifold, is the n-th cohomology group of X with integer coefficients, then is its n-th cohomology group with complex coefficients and Hodge theory provides the decomposition of H into a direct sum as above, so that these data define a pure Hodge structure of weight n. On the other hand, the Hodge–de Rham spectral sequence supplies with the decreasing filtration by as in the second definition.
For applications in algebraic geometry, namely, classification of complex projective varieties by their periods, the set of all Hodge structures of weight n on is too big. Using the Riemann bilinear relations, in this case called Hodge Riemann bilinear relations, it can be substantially simplified. A polarized Hodge structure of weight n consists of a Hodge structure and a non-degenerate integer bilinear form Q on (polarization), which is extended to H by linearity, and satisfying the conditions:
In terms of the Hodge filtration, these conditions imply that
where C is the Weil operator on H, given by on .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a Tannakian category is a particular kind of C, equipped with some extra structure relative to a given field K. The role of such categories C is to approximate, in some sense, the category of linear representations of an algebraic group G defined over K. A number of major applications of the theory have been made, or might be made in pursuit of some of the central conjectures of contemporary algebraic geometry and number theory.
Pierre René, Viscount Deligne (dəliɲ; born 3 October 1944) is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoord Prize, and 1978 Fields Medal. Deligne was born in Etterbeek, attended school at Athénée Adolphe Max and studied at the Université libre de Bruxelles (ULB), writing a dissertation titled Théorème de Lefschetz et critères de dégénérescence de suites spectrales (Theorem of Lefschetz and criteria of degeneration of spectral sequences).
In algebraic geometry, motives (or sometimes motifs, following French usage) is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.
The subject deals with differential geometry and its relation to global analysis, partial differential equations, geometric measure theory and variational principles to name a few.
In this reading group, we will work together through recent important papers in applied topology.
Participants will take turns presenting articles, then leading a discussion of the contents.
In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...
EPFL2024
The field of computational topology has developed many powerful tools to describe the shape of data, offering an alternative point of view from classical statistics. This results in a variety of complex structures that are not always directly amenable for ...
Phase synchronizations in models of coupled oscillators such as the Kuramoto model have been widely studied with pairwise couplings on arbitrary topologies, showing many unexpected dynamical behaviors. Here, based on a recent formulation the Kuramoto model ...