In mathematics, a Tannakian category is a particular kind of C, equipped with some extra structure relative to a given field K. The role of such categories C is to approximate, in some sense, the category of linear representations of an algebraic group G defined over K. A number of major applications of the theory have been made, or might be made in pursuit of some of the central conjectures of contemporary algebraic geometry and number theory.
The name is taken from Tadao Tannaka and Tannaka–Krein duality, a theory about compact groups G and their representation theory. The theory was developed first in the school of Alexander Grothendieck. It was later reconsidered by Pierre Deligne, and some simplifications made. The pattern of the theory is that of Grothendieck's Galois theory, which is a theory about finite permutation representations of groups G which are profinite groups.
The gist of the theory is that the fiber functor Φ of the Galois theory is replaced by a tensor functor T from C to K-Vect. The group of natural transformations of Φ to itself, which turns out to be a profinite group in the Galois theory, is replaced by the group (a priori only a monoid) of natural transformations of T into itself, that respect the tensor structure. This is by nature not an algebraic group, but an inverse limit of algebraic groups (pro-algebraic group).
A neutral Tannakian category is a , such that there exists a K-tensor functor to the that is exact and faithful.
The construction is used in cases where a Hodge structure or l-adic representation is to be considered in the light of group representation theory. For example, the Mumford–Tate group and motivic Galois group are potentially to be recovered from one cohomology group or Galois module, by means of a mediating Tannakian category it generates.
Those areas of application are closely connected to the theory of motives. Another place in which Tannakian categories have been used is in connection with the Grothendieck–Katz p-curvature conjecture; in other words, in bounding monodromy groups.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course will explain the theory of vanishing cycles and perverse sheaves. We will see how the Hard Lefschetz theorem can be proved using perverse sheaves. If we have more time we will try to see t
Algebraic geometry is the common language for many branches of modern research in mathematics. This course gives an introduction to this field by studying algebraic curves and their intersection theor
In this course we will describe in numerous examples how methods from l-adic cohomology as developed by Grothendieck, Deligne and Katz can interact with methods from analytic number theory (prime numb
Explore la théorie des nombres adéliques, mettant l'accent sur les treillis, les modules, les combinaisons linéaires et les propriétés linéaires Z.
Concepts associés (6)
We compute the L-2-Betti numbers of the free C*-tensor categories, which are the representation categories of the universal unitary quantum groups A(u)(F). We show that the L-2-Betti numbers of the dual of a compact quantum group G are equal to the L-2-Bet ...
In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures have been generalized for all complex varieties (even if they are singular and non-complete) in the form of mixed Hodge structures, defined by Pierre Deligne (1970). A variation of Hodge structure is a family of Hodge structures parameterized by a manifold, first studied by Phillip Griffiths (1968).
La théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
Pierre René, vicomte Deligne est un mathématicien belge, né le à Etterbeek dans la Région de Bruxelles-Capitale. Pierre René Deligne est diplômé de l'Université libre de Bruxelles en 1966, en ayant effectué une année de scolarité à l’école normale supérieure en 1965-1966. Il soutient une première thèse de doctorat en 1968 à Bruxelles. De 1968 à 1984, il est membre de l’Institut des hautes études scientifiques, où il assiste aux séminaires d’Alexandre Grothendieck qu'il appelle son « maître ».