In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures have been generalized for all complex varieties (even if they are singular and non-complete) in the form of mixed Hodge structures, defined by Pierre Deligne (1970). A variation of Hodge structure is a family of Hodge structures parameterized by a manifold, first studied by Phillip Griffiths (1968). All these concepts were further generalized to mixed Hodge modules over complex varieties by Morihiko Saito (1989).
A pure Hodge structure of integer weight n consists of an abelian group and a decomposition of its complexification H into a direct sum of complex subspaces , where , with the property that the complex conjugate of is :
An equivalent definition is obtained by replacing the direct sum decomposition of H by the Hodge filtration, a finite decreasing filtration of H by complex subspaces subject to the condition
The relation between these two descriptions is given as follows:
For example, if X is a compact Kähler manifold, is the n-th cohomology group of X with integer coefficients, then is its n-th cohomology group with complex coefficients and Hodge theory provides the decomposition of H into a direct sum as above, so that these data define a pure Hodge structure of weight n. On the other hand, the Hodge–de Rham spectral sequence supplies with the decreasing filtration by as in the second definition.
For applications in algebraic geometry, namely, classification of complex projective varieties by their periods, the set of all Hodge structures of weight n on is too big. Using the Riemann bilinear relations, in this case called Hodge Riemann bilinear relations, it can be substantially simplified. A polarized Hodge structure of weight n consists of a Hodge structure and a non-degenerate integer bilinear form Q on (polarization), which is extended to H by linearity, and satisfying the conditions:
In terms of the Hodge filtration, these conditions imply that
where C is the Weil operator on H, given by on .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The subject deals with differential geometry and its relation to global analysis, partial differential equations, geometric measure theory and variational principles to name a few.
In this reading group, we will work together through recent important papers in applied topology.
Participants will take turns presenting articles, then leading a discussion of the contents.
In mathematics, a Tannakian category is a particular kind of C, equipped with some extra structure relative to a given field K. The role of such categories C is to approximate, in some sense, the category of linear representations of an algebraic group G defined over K. A number of major applications of the theory have been made, or might be made in pursuit of some of the central conjectures of contemporary algebraic geometry and number theory.
Pierre René, vicomte Deligne est un mathématicien belge, né le à Etterbeek dans la Région de Bruxelles-Capitale. Pierre René Deligne est diplômé de l'Université libre de Bruxelles en 1966, en ayant effectué une année de scolarité à l’école normale supérieure en 1965-1966. Il soutient une première thèse de doctorat en 1968 à Bruxelles. De 1968 à 1984, il est membre de l’Institut des hautes études scientifiques, où il assiste aux séminaires d’Alexandre Grothendieck qu'il appelle son « maître ».
La théorie des motifs est un domaine de recherche mathématique qui tente d'unifier les aspects combinatoires, topologiques et arithmétiques de la géométrie algébrique. Introduite au début des années 1960 et de manière conjecturale par Alexander Grothendieck afin de mettre au jour des propriétés supposées communes à différentes théories cohomologiques, elle se trouve au cœur de nombreux problèmes ouverts en mathématiques pures. En particulier, plusieurs propriétés des courbes elliptiques semblent motiviques par nature, comme la conjecture de Birch et Swinnerton-Dyer.
The field of computational topology has developed many powerful tools to describe the shape of data, offering an alternative point of view from classical statistics. This results in a variety of complex structures that are not always directly amenable for ...
Phase synchronizations in models of coupled oscillators such as the Kuramoto model have been widely studied with pairwise couplings on arbitrary topologies, showing many unexpected dynamical behaviors. Here, based on a recent formulation the Kuramoto model ...
In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...