Summary
X-ray spectroscopy is a general term for several spectroscopic techniques for characterization of materials by using x-ray radiation. When an electron from the inner shell of an atom is excited by the energy of a photon, it moves to a higher energy level. When it returns to the low energy level, the energy which it previously gained by the excitation is emitted as a photon which has a wavelength that is characteristic for the element (there could be several characteristic wavelengths per element). Analysis of the X-ray emission spectrum produces qualitative results about the elemental composition of the specimen. Comparison of the specimen's spectrum with the spectra of samples of known composition produces quantitative results (after some mathematical corrections for absorption, fluorescence and atomic number). Atoms can be excited by a high-energy beam of charged particles such as electrons (in an electron microscope for example), protons (see PIXE) or a beam of X-rays (see X-ray fluorescence, or XRF or also recently in transmission XRT). These methods enable elements from the entire periodic table to be analysed, with the exception of H, He and Li. In electron microscopy an electron beam excites X-rays; there are two main techniques for analysis of spectra of characteristic X-ray radiation: energy-dispersive X-ray spectroscopy (EDS) and wavelength dispersive X-ray spectroscopy (WDS). In X-Ray Transmission (XRT), the equivalent atomic composition (Zeff) is captured based on photoelectric and Compton effects. Energy-dispersive X-ray spectroscopy In an energy-dispersive X-ray spectrometer, a semiconductor detector measures energy of incoming photons. To maintain detector integrity and resolution it should be cooled with liquid nitrogen or by Peltier cooling. EDS is widely employed in electron microscopes (where imaging rather than spectroscopy is a main task) and in cheaper and/or portable XRF units. Wavelength-dispersive X-ray spectroscopy In a wavelength-dispersive X-ray spectrometer, a single crystal diffracts the photons according to Bragg's law, which are then collected by a detector.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood