An autotransformer is an electrical transformer with only one winding. The "auto" (Greek for "self") prefix refers to the single coil acting alone, not to any kind of automatic mechanism. In an autotransformer, portions of the same winding act as both the primary winding and secondary winding sides of the transformer. In contrast, an ordinary transformer has separate primary and secondary windings which have metallic conducting a magnetic core, conducting magnetic flux path between them. The autotransformer winding has at least three taps where electrical connections are made. Since part of the winding does "double duty", autotransformers have the advantages of often being smaller, lighter, and cheaper than typical dual-winding transformers, but the disadvantage of not providing electrical isolation between primary and secondary circuits. Other advantages of autotransformers include lower leakage reactance, lower losses, lower excitation current, and increased VA rating for a given size and mass. An example of an application of an autotransformer is one style of traveler's voltage converter, that allows 230-volt devices to be used on 120-volt supply circuits, or the reverse. An autotransformer with multiple taps may be applied to adjust the voltage at the end of a long distribution circuit to correct for excess voltage drop; when automatically controlled, this is one example of a voltage regulator. An autotransformer has a single winding with two end terminals and one or more terminals at intermediate tap points. It is a transformer in which the primary and secondary coils have part of their turns in common. The portion of the winding shared by both the primary and secondary is the common section. The portion of the winding not shared by both the primary and secondary is the series section. The primary voltage is applied across two of the terminals. The secondary voltage is taken from two terminals, one terminal of which is usually in common with a primary voltage terminal.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (6)
Transformer: Functionality, Calculations, and Applications
Covers the functionality of a transformer and its applications in electric power transmission.
Grounding, Filtering and Balancing
Explores grounding, filtering, and balancing in electronic systems, addressing misconceptions, ground loops, and component behavior.
Three-Phase Sinusoidal Circuits
Covers the efficiency and weight/power ratio of three-phase alternators and symmetrical three-phase systems.
Show more
Related publications (47)
Related concepts (11)
AC motor
An AC motor is an electric motor driven by an alternating current (AC). The AC motor commonly consists of two basic parts, an outside stator having coils supplied with alternating current to produce a rotating magnetic field, and an inside rotor attached to the output shaft producing a second rotating magnetic field. The rotor magnetic field may be produced by permanent magnets, reluctance saliency, or DC or AC electrical windings.
Motor controller
A motor controller is a device or group of devices that can coordinate in a predetermined manner the performance of an electric motor. A motor controller might include a manual or automatic means for starting and stopping the motor, selecting forward or reverse rotation, selecting and regulating the speed, regulating or limiting the torque, and protecting against overloads and electrical faults. Motor controllers may use electromechanical switching, or may use power electronics devices to regulate the speed and direction of a motor.
Mains electricity
Mains electricity or utility power, power grid, domestic power, and wall power, or, in some parts of Canada, hydro, is a general-purpose alternating-current (AC) electric power supply. It is the form of electrical power that is delivered to homes and businesses through the electric grid in many parts of the world. People use this electricity to power everyday items (such as domestic appliances, televisions and lamps) by plugging them into a wall outlet. The voltage and frequency of electric power differs between regions.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.