Summary
In mathematics, a quadratic form over a field F is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise the quadratic form is anisotropic. More explicitly, if q is a quadratic form on a vector space V over F, then a non-zero vector v in V is said to be isotropic if q(v) = 0. A quadratic form is isotropic if and only if there exists a non-zero isotropic vector (or null vector) for that quadratic form. Suppose that (V, q) is quadratic space and W is a subspace of V. Then W is called an isotropic subspace of V if some vector in it is isotropic, a totally isotropic subspace if all vectors in it are isotropic, and an anisotropic subspace if it does not contain any (non-zero) isotropic vectors. The of a quadratic space is the maximum of the dimensions of the totally isotropic subspaces. A quadratic form q on a finite-dimensional real vector space V is anisotropic if and only if q is a definite form: either q is positive definite, i.e. q(v) > 0 for all non-zero v in V ; or q is negative definite, i.e. q(v) < 0 for all non-zero v in V. More generally, if the quadratic form is non-degenerate and has the signature (a, b), then its isotropy index is the minimum of a and b. An important example of an isotropic form over the reals occurs in pseudo-Euclidean space. Let F be a field of characteristic not 2 and V = F2. If we consider the general element (x, y) of V, then the quadratic forms q = xy and r = x2 − y2 are equivalent since there is a linear transformation on V that makes q look like r, and vice versa. Evidently, (V, q) and (V, r) are isotropic. This example is called the hyperbolic plane in the theory of quadratic forms. A common instance has F = real numbers in which case {x ∈ V : q(x) = nonzero constant} and {x ∈ V : r(x) = nonzero constant} are hyperbolas. In particular, {x ∈ V : r(x) = 1} is the unit hyperbola. The notation 1 ⊕ −1 has been used by Milnor and Husemoller for the hyperbolic plane as the signs of the terms of the bivariate polynomial r are exhibited.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related publications (42)