Summary
Terence Chi-Shen Tao (; born 17 July 1975) is an Australian mathematician. He is a professor of mathematics at the University of California, Los Angeles (UCLA), where he holds the James and Carol Collins chair. His research includes topics in harmonic analysis, partial differential equations, algebraic combinatorics, arithmetic combinatorics, geometric combinatorics, probability theory, compressed sensing and analytic number theory. Tao was born to ethnic Chinese immigrant parents and raised in Adelaide. Tao won the Fields Medal in 2006 and won the Royal Medal and Breakthrough Prize in Mathematics in 2014. He is also a 2006 MacArthur Fellow. Tao has been the author or co-author of over three hundred research papers. He is widely regarded as one of the greatest living mathematicians and has been referred to as the "Mozart of mathematics". Tao's parents are first-generation immigrants from Hong Kong to Australia. Tao's father, Billy Tao, was a Chinese paediatrician who was born in Shanghai and earned his medical degree (MBBS) from the University of Hong Kong in 1969. Tao's mother, Grace Leong, was born in Hong Kong; she received a first-class honours degree in mathematics and physics at the University of Hong Kong. She was a secondary school teacher of mathematics and physics in Hong Kong. Billy and Grace met as students at the University of Hong Kong. They then emigrated from Hong Kong to Australia in 1972. Tao also has two brothers, Trevor and Nigel, who are living in Australia. Both formerly represented the states at the International Mathematical Olympiad. Furthermore, Trevor has been representing Australia internationally in chess and holds the title of Chess International Master. Tao speaks Cantonese but cannot write Chinese. Tao is married to Laura Tao, an electrical engineer at NASA's Jet Propulsion Laboratory. They live in Los Angeles, California, and have two children: Riley and daughter Madeleine. A child prodigy, Tao exhibited extraordinary mathematical abilities from an early age, attending university-level mathematics courses at the age of 9.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
MATH-251(c): Numerical analysis
Le cours présente des méthodes numériques pour la résolution de problèmes mathématiques comme des systèmes d'équations linéaires ou non linéaires, approximation de fonctions, intégration et dérivation
MATH-603: Subconvexity, Periods and Equidistribution
This course is a modern exposition of "Duke's Theorems" which describe the distribution of representations of large integers by a fixed ternary quadratic form. It will be the occasion to introduce the
Related lectures (32)
Eisenstein Series and Spectral Decomposition
Covers Eisenstein series properties and spectral decomposition of functions.
Ideal Class Group Relations
Covers the relations between the ideal class group and proper fractional ideals.
Quaternion Algebra and Hermite Space
Covers quaternion algebra, Waldspurger formula, and Hermite space in relation to L-functions and inner products.
Show more
Related publications (14)
Related people (1)
Related concepts (13)
Riemann hypothesis
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by , after whom it is named.
Szemerédi's theorem
In arithmetic combinatorics, Szemerédi's theorem is a result concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured that every set of integers A with positive natural density contains a k-term arithmetic progression for every k. Endre Szemerédi proved the conjecture in 1975. A subset A of the natural numbers is said to have positive upper density if Szemerédi's theorem asserts that a subset of the natural numbers with positive upper density contains infinitely many arithmetic progressions of length k for all positive integers k.
Ben Green (mathematician)
Ben Joseph Green FRS (born 27 February 1977) is a British mathematician, specialising in combinatorics and number theory. He is the Waynflete Professor of Pure Mathematics at the University of Oxford. Ben Green was born on 27 February 1977 in Bristol, England. He studied at local schools in Bristol, Bishop Road Primary School and Fairfield Grammar School, competing in the International Mathematical Olympiad in 1994 and 1995. He entered Trinity College, Cambridge in 1995 and completed his BA in mathematics in 1998, winning the Senior Wrangler title.
Show more