In geometry, a vertex (: vertices or vertexes) is a point where two or more curves, lines, or edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. The vertex of an angle is the point where two rays begin or meet, where two line segments join or meet, where two lines intersect (cross), or any appropriate combination of rays, segments, and lines that result in two straight "sides" meeting at one place. A vertex is a corner point of a polygon, polyhedron, or other higher-dimensional polytope, formed by the intersection of edges, faces or facets of the object. In a polygon, a vertex is called "convex" if the internal angle of the polygon (i.e., the angle formed by the two edges at the vertex with the polygon inside the angle) is less than π radians (180°, two right angles); otherwise, it is called "concave" or "reflex". More generally, a vertex of a polyhedron or polytope is convex, if the intersection of the polyhedron or polytope with a sufficiently small sphere centered at the vertex is convex, and is concave otherwise. Polytope vertices are related to vertices of graphs, in that the 1-skeleton of a polytope is a graph, the vertices of which correspond to the vertices of the polytope, and in that a graph can be viewed as a 1-dimensional simplicial complex the vertices of which are the graph's vertices. However, in graph theory, vertices may have fewer than two incident edges, which is usually not allowed for geometric vertices. There is also a connection between geometric vertices and the vertices of a curve, its points of extreme curvature: in some sense the vertices of a polygon are points of infinite curvature, and if a polygon is approximated by a smooth curve, there will be a point of extreme curvature near each polygon vertex. However, a smooth curve approximation to a polygon will also have additional vertices, at the points where its curvature is minimal.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (26)
MATH-261: Discrete optimization
This course is an introduction to linear and discrete optimization. Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
CS-250: Algorithms I
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
EE-548: Audio engineering
This lecture is oriented towards the study of audio engineering, room acoustics, sound propagation, and sound radiation from sources and acoustic antennas. The learning outcomes will be the techniques
Afficher plus
Séances de cours associées (66)
Cartographie locale à mondiale dans l'analyse des éléments finis
Discute de la cartographie des coordonnées locales à mondiales dans l'analyse des éléments finis et de l'importance de la numérotation du vertex.
Graph Sketching : Composants connectés
Couvre les croquis graphiques et les composants connectés dans les modèles de streaming.
Impédance de rayonnement du piston sur l'écran
Explore l'impédance de rayonnement d'un piston sur un écran en utilisant COMSOL Multiphysics, en se concentrant sur les expressions de résistance, de masse et d'impédance.
Afficher plus
Concepts associés (21)
Géométrie
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
N-squelette
vignette|Le diagramme de Schlegel permet de visualiser le 1-squelette de cet hexadécachore, polytope de dimension 4. En mathématiques, on définit le n-squelette, ou squelette d'ordre n de certains objets construits avec des blocs des différentes dimensions : les polytopes de la géométrie affine, les CW-complexes de la topologie algébrique. Le squelette d'ordre 0 est formé des sommets, celui d'ordre 1 des sommets et des arêtes, et de façon générale le squelette d'ordre n est formé de la réunion des cellules d'ordre inférieur ou égal à n.
Complexe simplicial
thumb|Exemple d'un complexe simplicial.En mathématiques, un complexe simplicial est un objet géométrique déterminé par une donnée combinatoire et permettant de décrire certains espaces topologiques en généralisant la notion de triangulation d'une surface. Un tel objet se présente comme un graphe avec des sommets reliés par des arêtes, sur lesquelles peuvent se rattacher des faces triangulaires, elles-mêmes bordant éventuellement des faces de dimension supérieure, etc.
Afficher plus
MOOCs associés (2)
Geographical Information Systems 1
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Geographical Information Systems 1
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.