In computing, floating-point arithmetic (FP) is arithmetic that represents subsets of real numbers using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base.
Numbers of this form are called floating-point numbers.
For example, 12.345 is a floating-point number in base ten with five digits of precision:
However, unlike 12.345, 12.3456 is not a floating-point number in base ten with five digits of precision—it needs six digits of precision; the nearest floating-point number with only five digits is 12.346.
In practice, most floating-point systems use base two, though base ten (decimal floating point) is also common.
Floating-point arithmetic operations, such as addition and division, approximate the corresponding real number arithmetic operations by rounding any result that is not a floating-point number itself to a nearby floating-point number.
For example, in a floating-point arithmetic with five base-ten digits of precision, the sum 12.345 + 1.0001 = 13.3451 might be rounded to 13.345.
The term floating point refers to the fact that the number's radix point can "float" anywhere to the left, right, or between the significant digits of the number. This position is indicated by the exponent, so floating point can be considered a form of scientific notation.
A floating-point system can be used to represent, with a fixed number of digits, numbers of very different orders of magnitude — such as the number of meters between galaxies or between protons in an atom. For this reason, floating-point arithmetic is often used to allow very small and very large real numbers that require fast processing times. The result of this dynamic range is that the numbers that can be represented are not uniformly spaced; the difference between two consecutive representable numbers varies with their exponent.
Over the years, a variety of floating-point representations have been used in computers. In 1985, the IEEE 754 Standard for Floating-Point Arithmetic was established, and since the 1990s, the most commonly encountered representations are those defined by the IEEE.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Visual computing and machine learning are characterized by their reliance on numerical algorithms to process large amounts of information such as images, shapes, and 3D volumes. This course will famil
Welcome to the introductory course in digital design and computer architecture. In this course, we will embark on a journey into the world of digital systems, exploring the fundamental principles and
Mettre en pratique les bases de la programmation vues au semestre précédent. Développer un logiciel structuré. Méthode de debug d'un logiciel. Introduction à la programmation scientifique. Introductio
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts.
Python is a high-level, general-purpose programming language. Its design philosophy emphasizes code readability with the use of significant indentation. Python is dynamically typed and garbage-collected. It supports multiple programming paradigms, including structured (particularly procedural), object-oriented and functional programming. It is often described as a "batteries included" language due to its comprehensive standard library.
In mathematics, exponentiation is an operation involving two numbers, the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this is pronounced as "b (raised) to the (power of) n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases: The exponent is usually shown as a superscript to the right of the base.
Smart contracts have emerged as the most promising foundations for applications of the blockchain technology. Even though smart contracts are expected to serve as the backbone of the next-generation web, they have several limitations that hinder their wide ...
Situational awareness strategies are essential for the reliable and secure operation of the electric power grid which represents critical infrastructure in modern society. With the rise of converter-interfaced renewable generation and the consequent shift ...
EPFL2024
, , , ,
High-entropy alloys (HEAs), containing several metallic elements in near-equimolar proportions, have long been of interest for their unique mechanical properties. More recently, they have emerged as a promising platform for the development of novel heterog ...