Summary
In geometry, Plücker coordinates, introduced by Julius Plücker in the 19th century, are a way to assign six homogeneous coordinates to each line in projective 3-space, \mathbb P^3. Because they satisfy a quadratic constraint, they establish a one-to-one correspondence between the 4-dimensional space of lines in \mathbb P^3 and points on a quadric in \mathbb P^5 (projective 5-space). A predecessor and special case of Grassmann coordinates (which describe k-dimensional linear subspaces, or flats, in an n-dimensional Euclidean space), Plücker coordinates arise naturally in geometric algebra. They have proved useful for computer graphics, and also can be extended to coordinates for the screws and wrenches in the theory of kinematics used for robot control. A line L in 3-dimensional Euclidean space is determined by two distinct points that it contains, or by two distinct planes that contain it. Consider the first case, with points and The vector displacement from x to y is nonzero because the points are distinct, and represents the direction of the line. That is, every displacement between points on L is a scalar multiple of d = y – x. If a physical particle of unit mass were to move from x to y, it would have a moment about the origin. The geometric equivalent is a vector whose direction is perpendicular to the plane containing L and the origin, and whose length equals twice the area of the triangle formed by the displacement and the origin. Treating the points as displacements from the origin, the moment is m = x × y, where "×" denotes the vector cross product. For a fixed line, L, the area of the triangle is proportional to the length of the segment between x and y, considered as the base of the triangle; it is not changed by sliding the base along the line, parallel to itself. By definition the moment vector is perpendicular to every displacement along the line, so d ⋅ m = 0, where "⋅" denotes the vector dot product. Although neither d nor m alone is sufficient to determine L, together the pair does so uniquely, up to a common (nonzero) scalar multiple which depends on the distance between x and y.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (22)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
PHYS-427: Relativity and cosmology I
Introduce the students to general relativity and its classical tests.
ENG-639: Dynamic programming and optimal control
This course provides an introduction to stochastic optimal control and dynamic programming (DP), with a variety of engineering applications. The course focuses on the DP principle of optimality, and i
Show more
Related publications (14)
Related concepts (5)
Plücker embedding
In mathematics, the Plücker map embeds the Grassmannian , whose elements are k-dimensional subspaces of an n-dimensional vector space V, either real or complex, in a projective space, thereby realizing it as an algebraic variety. More precisely, the Plücker map embeds into the projectivization of the -th exterior power of . The image is algebraic, consisting of the intersection of a number of quadrics defined by the Plücker relations (see below).
Julius Plücker
Julius Plücker (16 June 1801 – 22 May 1868) was a German mathematician and physicist. He made fundamental contributions to the field of analytical geometry and was a pioneer in the investigations of cathode rays that led eventually to the discovery of the electron. He also vastly extended the study of Lamé curves. Plücker was born at Elberfeld (now part of Wuppertal). After being educated at Düsseldorf and at the universities of Bonn, Heidelberg and Berlin he went to Paris in 1823, where he came under the influence of the great school of French geometers, whose founder, Gaspard Monge, had only recently died.
Grassmannian
In mathematics, the Grassmannian Gr(k, V) is a space that parameterizes all k-dimensional linear subspaces of the n-dimensional vector space V. For example, the Grassmannian Gr(1, V) is the space of lines through the origin in V, so it is the same as the projective space of one dimension lower than V. When V is a real or complex vector space, Grassmannians are compact smooth manifolds.
Show more