Concept

Conditional convergence

Summary
In mathematics, a series or integral is said to be conditionally convergent if it converges, but it does not converge absolutely. More precisely, a series of real numbers is said to converge conditionally if exists (as a finite real number, i.e. not or ), but A classic example is the alternating harmonic series given by which converges to , but is not absolutely convergent (see Harmonic series). Bernhard Riemann proved that a conditionally convergent series may be rearranged to converge to any value at all, including ∞ or −∞; see Riemann series theorem. The Lévy–Steinitz theorem identifies the set of values to which a series of terms in Rn can converge. A typical conditionally convergent integral is that on the non-negative real axis of (see Fresnel integral).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.