Concept

Théorème de réarrangement de Riemann

Résumé
En mathématiques, le théorème de réarrangement de Riemann est un théorème, nommé en l'honneur du mathématicien Bernhard Riemann, d'après lequel si une série à termes réels est semi-convergente, alors on peut réarranger ses termes pour qu'elle converge vers n'importe quel réel, ou bien tende vers plus ou moins l'infini. Il en résulte que dans R, toute série inconditionnellement convergente est absolument convergente (autrement dit : toute famille sommable est absolument sommable). Soit (u) une suite à termes réels dont la série associée est semi-convergente, c'est-à-dire que Alors, pour tout couple tel que , il existe une permutation σ de N telle que la suite des sommes partielles de la série de terme général vérifie : En particulier, pour tout , il existe une permutation σ de N telle que Prenons l'exemple de la série harmonique alternée. On définit donc une suite (u) par dont la série converge d'après le critère de convergence des séries alternées, mais ne converge pas absolument car la série harmonique diverge. Notons l sa somme (qui vaut : l = ln(2)). En réarrangeant les termes, la série devient : Conclusion : la permutation choisie est telle que la nouvelle série (qui n'est alors plus la série harmonique alternée) converge vers la moitié de la somme de la série de départ. En généralisant le procédé, on peut faire converger un réarrangement de cette série vers n'importe quel nombre réel α : Par exemple en sommant alternativement (dans l'ordre) a termes positifs et b termes négatifs (la série alternée elle-même correspond à a = b = 1, et le cas précédent correspond à a = 1 et b = 2), on obtient une série qui converge vers ln(2), d'après le développement suivant, quand n tend vers l'infini, de la somme de p = an termes positifs et q = bn ou b(n – 1) termes négatifs, qui utilise un développement asymptotique de la suite H des sommes partielles de la série harmonique : Plus généralement, la somme du réarrangement aura pour valeur α = ln(2) en choisissant alternativement p termes positifs et q termes négatifs tels que p/q → r = e/4.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-101(e): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Afficher plus