Summary
In mathematics (particularly multivariable calculus), a volume integral (∫∫∫) refers to an integral over a 3-dimensional domain; that is, it is a special case of multiple integrals. Volume integrals are especially important in physics for many applications, for example, to calculate flux densities, or to calculate mass from a corresponding density function. It can also mean a triple integral within a region of a function and is usually written as: A volume integral in cylindrical coordinates is and a volume integral in spherical coordinates (using the ISO convention for angles with as the azimuth and measured from the polar axis (see more on conventions)) has the form Integrating the equation over a unit cube yields the following result: So the volume of the unit cube is 1 as expected. This is rather trivial however, and a volume integral is far more powerful. For instance if we have a scalar density function on the unit cube then the volume integral will give the total mass of the cube.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (32)
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-203(b): Analysis III
Le cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
MATH-106(a): Analysis II
Étudier les concepts fondamentaux d'analyse, et le calcul différentiel et intégral des fonctions réelles de plusieurs variables.
Show more
Related lectures (70)
Turbulence: Numerical Flow Simulation
Explores turbulence characteristics, simulation methods, and modeling challenges, providing guidelines for choosing and validating turbulence models.
Differential Forms Integration
Covers the integration of differential forms on smooth manifolds, including the concepts of closed and exact forms.
Center of Mass Calculation in Mechanics
Explores center of mass calculation in mechanics, emphasizing system symmetry and spherical coordinates for simplifying calculations.
Show more
Related publications (24)