Summary
Least-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum based on a least-squares fit of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in the long and gapped records; LSSA mitigates such problems. Unlike in Fourier analysis, data need not be equally spaced to use LSSA. Developed in 1969 and 1971, LSSA is also known as the Vaníček method and the Gauss-Vaniček method after Petr Vaníček, and as the Lomb method or the Lomb–Scargle periodogram, based on the simplifications first by Nicholas R. Lomb and then by Jeffrey D. Scargle. The close connections between Fourier analysis, the periodogram, and the least-squares fitting of sinusoids have been known for a long time. However, most developments are restricted to complete data sets of equally spaced samples. In 1963, Freek J. M. Barning of Mathematisch Centrum, Amsterdam, handled unequally spaced data by similar techniques, including both a periodogram analysis equivalent to what nowadays is called the Lomb method and least-squares fitting of selected frequencies of sinusoids determined from such periodograms — and connected by a procedure known today as the matching pursuit with post-back fitting or the orthogonal matching pursuit. Petr Vaníček, a Canadian geophysicist and geodesist of the University of New Brunswick, proposed in 1969 also the matching-pursuit approach for equally and unequally spaced data, which he called "successive spectral analysis" and the result a "least-squares periodogram". He generalized this method to account for any systematic components beyond a simple mean, such as a "predicted linear (quadratic, exponential, ...) secular trend of unknown magnitude", and applied it to a variety of samples, in 1971. Vaníček's strictly least-squares method was then simplified in 1976 by Nicholas R. Lomb of the University of Sydney, who pointed out its close connection to periodogram analysis.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (13)
COM-500: Statistical signal and data processing through applications
Building up on the basic concepts of sampling, filtering and Fourier transforms, we address stochastic modeling, spectral analysis, estimation and prediction, classification, and adaptive filtering, w
MATH-342: Time series
A first course in statistical time series analysis and applications.
PHYS-732: Plasma Diagnostics in Basic Plasma Physics Devices and Tokamaks: from Principles to Practice
The programme will allow students to learn plasma diagnostics and data processing methods of modern fusion experiments and to bridge the gap between diagnostics theory and experimental practice.
Show more
Related lectures (96)
Signal Processing: Basics and Spectral Analysis
Covers the basics of signal processing, linear estimation, and digital filters.
Harmonic Signals and Spectrum Estimation
Explores harmonic signals, spectrum estimation, and signal analysis methods using MATLAB tools.
Power Spectral Density Computation
Covers the computation of power spectral density and the design of communication systems.
Show more
Related publications (295)

Discrete choice modeling in the era of big data

Nicola Marco Ortelli

The technological advancements of the past decades have allowed transforming an increasing part of our daily actions and decisions into storable data, leading to a radical change in the scale and scope of available data in relation to virtually any object ...
EPFL2024

A Spectral Ansatz for The Long-Time Homogenization of The Wave Equation

Matthias Ruf

  • Consider the wave equation with heterogeneous coefficients in the homogenization regime. At large times, the wave interacts in a nontrivial way with the heterogeneities, giving rise to effective dispersive effects. The main achievement of the present wor ...
Ecole Polytechnique2024

The Power of Two Matrices in Spectral Algorithms for Community Recovery

Colin Peter Sandon

Spectral algorithms are some of the main tools in optimization and inference problems on graphs. Typically, the graph is encoded as a matrix and eigenvectors and eigenvalues of the matrix are then used to solve the given graph problem. Spectral algorithms ...
Ieee-Inst Electrical Electronics Engineers Inc2024
Show more
Related concepts (17)
Discrete-time Fourier transform
In mathematics, the discrete-time Fourier transform (DTFT), also called the finite Fourier transform, is a form of Fourier analysis that is applicable to a sequence of values. The DTFT is often used to analyze samples of a continuous function. The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.
Spectral density estimation
In statistical signal processing, the goal of spectral density estimation (SDE) or simply spectral estimation is to estimate the spectral density (also known as the power spectral density) of a signal from a sequence of time samples of the signal. Intuitively speaking, the spectral density characterizes the frequency content of the signal. One purpose of estimating the spectral density is to detect any periodicities in the data, by observing peaks at the frequencies corresponding to these periodicities.
Non-uniform discrete Fourier transform
In applied mathematics, the nonuniform discrete Fourier transform (NUDFT or NDFT) of a signal is a type of Fourier transform, related to a discrete Fourier transform or discrete-time Fourier transform, but in which the input signal is not sampled at equally spaced points or frequencies (or both). It is a generalization of the shifted DFT. It has important applications in signal processing, magnetic resonance imaging, and the numerical solution of partial differential equations.
Show more