Summary
This article gives a table of some common Lie groups and their associated Lie algebras. The following are noted: the topological properties of the group (dimension; connectedness; compactness; the nature of the fundamental group; and whether or not they are simply connected) as well as on their algebraic properties (abelian; simple; semisimple). For more examples of Lie groups and other related topics see the list of simple Lie groups; the Bianchi classification of groups of up to three dimensions; see classification of low-dimensional real Lie algebras for up to four dimensions; and the list of Lie group topics. Column legend Cpt: Is this group G compact? (Yes or No) Gives the group of components of G. The order of the component group gives the number of connected components. The group is connected if and only if the component group is trivial (denoted by 0). Gives the fundamental group of G whenever G is connected. The group is simply connected if and only if the fundamental group is trivial (denoted by 0). UC: If G is not simply connected, gives the universal cover of G. Classification of low-dimensional real Lie algebras Complex Lie group Note that a "complex Lie group" is defined as a complex analytic manifold that is also a group whose multiplication and inversion are each given by a holomorphic map. The dimensions in the table below are dimensions over C. Note that every complex Lie group/algebra can also be viewed as a real Lie group/algebra of twice the dimension. Complex Lie algebra The dimensions given are dimensions over C. Note that every complex Lie algebra can also be viewed as a real Lie algebra of twice the dimension. The Lie algebra of affine transformations of dimension two, in fact, exist for any field. An instance has already been listed in the first table for real Lie algebras.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (3)
Covering group
In mathematics, a covering group of a topological group H is a covering space G of H such that G is a topological group and the covering map p : G → H is a continuous group homomorphism. The map p is called the covering homomorphism. A frequently occurring case is a double covering group, a topological double cover in which H has index 2 in G; examples include the spin groups, pin groups, and metaplectic groups.
3D rotation group
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition. By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry), and orientation (i.e., handedness of space). Composing two rotations results in another rotation, every rotation has a unique inverse rotation, and the identity map satisfies the definition of a rotation.
Lorentz group
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz. For example, the following laws, equations, and theories respect Lorentz symmetry: The kinematical laws of special relativity Maxwell's field equations in the theory of electromagnetism The Dirac equation in the theory of the electron The Standard Model of particle physics The Lorentz group expresses the fundamental symmetry of space and time of all known fundamental laws of nature.