Carbon fibre reinforced carbon (CFRC),
carbon–carbon (C/C),
or reinforced carbon–carbon (RCC)
is a composite material consisting of carbon fiber reinforcement in a matrix of graphite. It was developed for the reentry vehicles of intercontinental ballistic missiles, and is most widely known as the material for the nose cone and wing leading edges of the Space Shuttle orbiter. Carbon-carbon brake discs and brake pads have been the standard component of the brake systems of Formula One racing cars since the late 1970s; the first year carbon brakes were seen on a Formula One car was 1976.
Carbon–carbon is well-suited to structural applications at high temperatures, or where thermal shock resistance and/or a low coefficient of thermal expansion is needed. While it is less brittle than many other ceramics, it lacks impact resistance; Space Shuttle Columbia was destroyed during atmospheric re-entry after one of its RCC panels was broken by the impact of a piece of polyurethane foam insulation that broke off from the Space Shuttle External Tank.
The material is made in three stages:
First, material is laid up in its intended final shape, with carbon filament and/or cloth surrounded by an organic binder such as plastic or pitch. Often, coke or some other fine carbon aggregate is added to the binder mixture.
Second, the lay-up is heated, so that pyrolysis transforms the binder to relatively pure carbon. The binder loses volume in the process, causing voids to form; the addition of aggregate reduces this problem, but does not eliminate it.
Third, the voids are gradually filled by forcing a carbon-forming gas such as acetylene through the material at a high temperature, over the course of several days. This long heat treatment process also allows the carbon to form into larger graphite crystals, and is the major reason for the material's high cost. The gray "Reinforced Carbon–Carbon (RCC)" panels on the space shuttle's wing leading edges and nose cone cost NASA $100,000/sq ft to produce, although much of this cost was a result of the advanced geometry and research costs associated with the panels.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The UE Argamassa Armada will develop prototypes of structural elements in textile reinforced concrete (TRC) for the context of social housing in Nicaragua, based on the knowledge of the TRC Prototype
Les propriétés mécaniques et physiques des composites anisotropes ainsi que leurs outils de calcul sont présentés. Les constituants, les mises en oeuvre et les relations microstructure-procédé-proprié
The course offers the opportunity to gain practical experience in the characterization of fiber reinforced polymer and manufacturing/production methods for composite structures.
The material is prese
Explores the chemistry of silicon and carbon compounds, including conductivity differences, compound existence, carbon nanotubes history, and environmental impact of carbon dioxide.
Explores the use of organic electronic materials in flexible bioelectronics, covering neural interfaces, carbon-based materials, controlled deposition, and advantages of organics.
Thermal expansion is the tendency of matter to change its shape, area, volume, and density in response to a change in temperature, usually not including phase transitions. Temperature is a monotonic function of the average molecular kinetic energy of a substance. When a substance is heated, molecules begin to vibrate and move more, usually creating more distance between themselves. Substances which contract with increasing temperature are unusual, and only occur within limited temperature ranges (see examples below).
Brake pads are a component of disc brakes used in automotive and other applications. Brake pads are composed of steel backing plates with friction material bound to the surface that faces the disc brake rotors. Brake pads convert the kinetic energy of a vehicle to thermal energy through friction. Two brake pads are contained in the brake with their friction surfaces facing the rotor. When the brakes are hydraulically applied, the caliper clamps or squeezes the two pads together onto the spinning rotor to slow and stop the vehicle.
The Space Shuttle thermal protection system (TPS) is the barrier that protected the Space Shuttle Orbiter during the searing heat of atmospheric reentry. A secondary goal was to protect from the heat and cold of space while in orbit. The TPS covered essentially the entire orbiter surface, and consisted of seven different materials in varying locations based on amount of required heat protection: Reinforced carbon–carbon (RCC), used in the nose cap, the chin area between the nose cap and nose landing gear doors, the arrowhead aft of the nose landing gear door, and the wing leading edges.
Water impacts form the critical load case for high-performance carbon fibre reinforced polymer (CFRP) racing craft. Such events produce a peaked, non-uniform pressure distribution that travels along a hull panel as it is immersed. Current design standards ...
2024
The selective and sensitive sensing of neurochemicals is essential to decipher in-brain chemistry underlying brain pathophysiology. The recent development of flexible and multifunctional polymer-based fibers has been shown useful in recording and modulatin ...
From a circular economyperspective, one-pot strategies for theisolation of cellulose nanomaterials at a high yield and with multifunctionalproperties are attractive. Here, the effects of lignin content (bleachedvs unbleached softwood kraft pulp) and sulfur ...