Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Thermal expansion is the tendency of matter to change its shape, area, volume, and density in response to a change in temperature, usually not including phase transitions. Temperature is a monotonic function of the average molecular kinetic energy of a substance. When a substance is heated, molecules begin to vibrate and move more, usually creating more distance between themselves. Substances which contract with increasing temperature are unusual, and only occur within limited temperature ranges (see examples below). The relative expansion (also called strain) divided by the change in temperature is called the material's coefficient of linear thermal expansion and generally varies with temperature. As energy in particles increases, they start moving faster and faster, weakening the intermolecular forces between them and therefore expanding the substance. If an equation of state is available, it can be used to predict the values of the thermal expansion at all the required temperatures and pressures, along with many other state functions. A number of materials contract on heating within certain temperature ranges; this is usually called negative thermal expansion, rather than "thermal contraction". For example, the coefficient of thermal expansion of water drops to zero as it is cooled to 3.983 °C and then becomes negative below this temperature; this means that water has a maximum density at this temperature, and this leads to bodies of water maintaining this temperature at their lower depths during extended periods of sub-zero weather. Other materials are also known to exhibit negative thermal expansion. Fairly pure silicon has a negative coefficient of thermal expansion for temperatures between about 18 and 120 kelvin. ALLVAR Alloy 30, a titanium alloy, exhibits anisotropic negative thermal expansion across a wide range of temperatures. Unlike gases or liquids, solid materials tend to keep their shape when undergoing thermal expansion.
Marie Estelle Solange Violay, Mathias Alexandre David Lebihain, François Xavier Thibault Passelègue, Federica Paglialunga