Summary
In mathematics, specifically the theory of quadratic forms, an ε-quadratic form is a generalization of quadratic forms to skew-symmetric settings and to *-rings; ε = ±1, accordingly for symmetric or skew-symmetric. They are also called -quadratic forms, particularly in the context of surgery theory. There is the related notion of ε-symmetric forms, which generalizes symmetric forms, skew-symmetric forms (= symplectic forms), Hermitian forms, and skew-Hermitian forms. More briefly, one may refer to quadratic, skew-quadratic, symmetric, and skew-symmetric forms, where "skew" means (−) and the * (involution) is implied. The theory is 2-local: away from 2, ε-quadratic forms are equivalent to ε-symmetric forms: half the symmetrization map (below) gives an explicit isomorphism. ε-symmetric forms and ε-quadratic forms are defined as follows. Given a module M over a -ring R, let B(M) be the space of bilinear forms on M, and let T : B(M) → B(M) be the "conjugate transpose" involution B(u, v) ↦ B(v, u). Since multiplication by −1 is also an involution and commutes with linear maps, −T is also an involution. Thus we can write ε = ±1 and εT is an involution, either T or −T (ε can be more general than ±1; see below). Define the ε-symmetric forms as the invariants of εT, and the ε-quadratic forms are the coinvariants. As an exact sequence, As kernel and cokernel, The notation Qε(M), Qε(M) follows the standard notation MG, MG for the invariants and coinvariants for a group action, here of the order 2 group (an involution). Composition of the inclusion and quotient maps (but not 1 − εT) as yields a map Qε(M) → Qε(M): every ε-symmetric form determines an ε-quadratic form. Conversely, one can define a reverse homomorphism "1 + εT": Qε(M) → Qε(M), called the symmetrization map (since it yields a symmetric form) by taking any lift of a quadratic form and multiplying it by 1 + εT. This is a symmetric form because (1 − εT)(1 + εT) = 1 − T2 = 0, so it is in the kernel. More precisely, .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related MOOCs (9)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more