Summary
In standard cosmology, comoving distance and proper distance (or physical distance) are two closely related distance measures used by cosmologists to define distances between objects. Comoving distance factors out the expansion of the universe, giving a distance that does not change in time due to the expansion of space (though this may change due to other, local factors, such as the motion of a galaxy within a cluster). Proper distance roughly corresponds to where a distant object would be at a specific moment of cosmological time, which can change over time due to the expansion of the universe. Comoving distance and proper distance are defined to be equal at the present time. At other times, the Universe's expansion results in the proper distance changing, while the comoving distance remains constant. Although general relativity allows one to formulate the laws of physics using arbitrary coordinates, some coordinate choices are more natural or easier to work with. Comoving coordinates are an example of such a natural coordinate choice. They assign constant spatial coordinate values to observers who perceive the universe as isotropic. Such observers are called "comoving" observers because they move along with the Hubble flow. A comoving observer is the only observer who will perceive the universe, including the cosmic microwave background radiation, to be isotropic. Non-comoving observers will see regions of the sky systematically blue-shifted or red-shifted. Thus isotropy, particularly isotropy of the cosmic microwave background radiation, defines a special local frame of reference called the comoving frame. The velocity of an observer relative to the local comoving frame is called the peculiar velocity of the observer. Most large lumps of matter, such as galaxies, are nearly comoving, so that their peculiar velocities (owing to gravitational attraction) are small compared to their Hubble-flow velocity seen by observers in moderately nearby galaxies, (i.e. as seen from galaxies just outside the group local to the observed "lump of matter").
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood