En mathématiques, et plus précisément en géométrie, la variété riemannienne est l'objet de base étudié en géométrie riemannienne. Il s'agit d'une variété, c'est-à-dire un espace courbe généralisant les courbes (de dimension 1) ou les surfaces (de dimension 2) à une dimension n quelconque, et sur laquelle il est possible d'effectuer des calculs de longueur. En termes techniques, une variété riemannienne est une variété différentielle munie d'une structure supplémentaire appelée métrique riemannienne permettant de calculer le produit scalaire de deux vecteurs tangents à la variété en un même point. Cette métrique permet de définir la longueur d'un chemin entre deux points de la variété, puis les géodésiques qui répondent à un problème de plus court chemin. Les concepts fondamentaux qu'on associe à la variété riemannienne sont la connexion de Levi-Civita et la courbure. Une variété riemannienne est la donnée d'une variété différentielle et, en chaque point , d'une forme quadratique définie positive sur l'espace tangent avec des hypothèses de régularité supplémentaires. Les espaces tangents sont des espaces euclidiens. Les hypothèses de régularité s'énoncent de deux manières équivalentes : L'application est une section globale de classe C du fibré vectoriel ; Pour tous champs de vecteurs de , l'application est de classe C. La donnée est appelée métrique riemannienne sur . Les métriques riemanniennes existent sur toute variété différentielle (paracompacte) et forment un cône convexe fermé de (avec des topologies raisonnables). Si et sont deux variétés riemanniennes, une isométrie locale est une application différentiable vérifiant . Autrement dit, les différentielles sont des applications linéaires isométriques. Par le théorème d'inversion locale, toute isométrie locale est un difféomorphisme local. Une isométrie (globale) est une isométrie locale bijective. Les variétés riemanniennes sont les exemples les plus élémentaires de variétés de Finsler.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (20)
MATH-344: Differential geometry III - Riemannian geometry
This course will serve as a first introduction to the geometry of Riemannian manifolds, which form an indispensible tool in the modern fields of differential geometry, analysis and theoretical physics
MATH-422: Introduction to riemannian geometry
La géométrie riemannienne est un (peut-être le) chapitre central de la géométrie différentielle et de la géométriec ontemporaine en général. Le sujet est très riche et ce cours est une modeste introdu
MATH-512: Optimization on manifolds
We develop, analyze and implement numerical algorithms to solve optimization problems of the form min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Riemann
Afficher plus
MOOCs associés (1)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.