Surface plasmons (SPs) are coherent delocalized electron oscillations that exist at the interface between any two materials where the real part of the dielectric function changes sign across the interface (e.g. a metal-dielectric interface, such as a metal sheet in air). SPs have lower energy than bulk (or volume) plasmons which quantise the longitudinal electron oscillations about positive ion cores within the bulk of an electron gas (or plasma).
The charge motion in a surface plasmon always creates electromagnetic fields outside (as well as inside) the metal. The total excitation, including both the charge motion and associated electromagnetic field, is called either a surface plasmon polariton at a planar interface, or a localized surface plasmon for the closed surface of a small particle.
The existence of surface plasmons was first predicted in 1957 by Rufus Ritchie. In the following two decades, surface plasmons were extensively studied by many scientists, the foremost of whom were T. Turbadar in the 1950s and 1960s, and E. N. Economou, Heinz Raether, E. Kretschmann, and A. Otto in the 1960s and 1970s. Information transfer in nanoscale structures, similar to photonics, by means of surface plasmons, is referred to as plasmonics.
Surface plasmon polariton
Surface plasmon polariton#Excitation
Surface plasmon polaritons can be excited by electrons or photons. In the case of photons, it cannot be done directly, but requires a prism, or a grating, or a defect on the metal surface.
Surface plasmon polariton#Fields and dispersion relation
At low frequency, an SPP approaches a Sommerfeld-Zenneck wave, where the dispersion relation (relation between frequency and wavevector) is the same as in free space. At a higher frequency, the dispersion relation bends over and reaches an asymptotic limit called the "plasma frequency" (see figure at right). For more details see surface plasmon polariton.
Surface plasmon polariton#Propagation length and skin depth
As an SPP propagates along the surface, it loses energy to the metal due to absorption.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In this course we study heat transfer (and energy conversion) from a microscopic perspective. First we focus on understanding why classical laws (i.e. Fourier Law) are what they are and what are their
Life has emerged on our planet from physical principles such as molecular self-organization, thermodynamics, stochastics and iterative refinement. This course will introduce the physical methods to st
Explores surface plasmon polaritons on thin films, discussing dispersion, modes, excitation, and energy transfer.
Covers AFM resolution calculation, metal slice thickness estimation in SPR, and practical SPR antigen detection experiments.
Explores nanophotonic engineering for energy devices, covering heat transfer, energy conversion, transport regimes, and surface polaritons.
Surface plasmon resonance (SPR) is a phenomenon that occurs where electrons in a thin metal sheet become excited by light that is directed to the sheet with a particular angle of incidence, and then travel parallel to the sheet. Assuming a constant light source wavelength and that the metal sheet is thin, the angle of incidence that triggers SPR is related to the refractive index of the material and even a small change in the refractive index will cause SPR to not be observed.
Surface plasmon polaritons (SPPs) are electromagnetic waves that travel along a metal–dielectric or metal–air interface, practically in the infrared or visible-frequency. The term "surface plasmon polariton" explains that the wave involves both charge motion in the metal ("surface plasmon") and electromagnetic waves in the air or dielectric ("polariton"). They are a type of surface wave, guided along the interface in much the same way that light can be guided by an optical fiber.
Nanophotonics or nano-optics is the study of the behavior of light on the nanometer scale, and of the interaction of nanometer-scale objects with light. It is a branch of optics, optical engineering, electrical engineering, and nanotechnology. It often involves dielectric structures such as nanoantennas, or metallic components, which can transport and focus light via surface plasmon polaritons. The term "nano-optics", just like the term "optics", usually refers to situations involving ultraviolet, visible, and near-infrared light (free-space wavelengths from 300 to 1200 nanometers).
In a recent discovery (Wen et al 2022 Phys. Rev. Lett. 129 045001), streaming waves were found in multipactor-induced plasma discharges. However, due to the limitations of a 1D simulation setup, these waves displayed only transverse dynamics. In this lette ...
Secondary electron emission is an important process that plays a significant role in several plasma-related applications. As measuring the secondary electron yield experimentally is very challenging, quantitative modelling of this process to obtain reliabl ...
WILEY-V C H VERLAG GMBH2023
Plasmonic photochemistry has a large potential to replace energy-intensive chemical processes with low-temperature, low-pressure light-driven chemical reactions. Plasmonic nanostructures have emerged as promising photocatalysts with exceptional and tunable ...