In number theory, the ideal class group (or class group) of an algebraic number field K is the quotient group JK/PK where JK is the group of fractional ideals of the ring of integers of K, and PK is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K.
The theory extends to Dedekind domains and their field of fractions, for which the multiplicative properties are intimately tied to the structure of the class group. For example, the class group of a Dedekind domain is trivial if and only if the ring is a unique factorization domain.
Ideal class groups (or, rather, what were effectively ideal class groups) were studied some time before the idea of an ideal was formulated. These groups appeared in the theory of quadratic forms: in the case of binary integral quadratic forms, as put into something like a final form by Carl Friedrich Gauss, a composition law was defined on certain equivalence classes of forms. This gave a finite abelian group, as was recognised at the time.
Later Ernst Kummer was working towards a theory of cyclotomic fields. It had been realised (probably by several people) that failure to complete proofs in the general case of Fermat's Last Theorem by factorisation using the roots of unity was for a very good reason: a failure of unique factorization, i.e., the fundamental theorem of arithmetic, to hold in the rings generated by those roots of unity was a major obstacle. Out of Kummer's work for the first time came a study of the obstruction to the factorisation. We now recognise this as part of the ideal class group: in fact Kummer had isolated the p-torsion in that group for the field of p-roots of unity, for any prime number p, as the reason for the failure of the standard method of attack on the Fermat problem (see regular prime).
Somewhat later again Richard Dedekind formulated the concept of ideal, Kummer having worked in a different way.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
Galois theory aims at describing the algebraic symmetries of fields. After reviewing the basic material (from the 2nd year course "Ring and Fields") and in particular the Galois correspondence, we wi
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.
In mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.
In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily unique up to the order of the factors. There are at least three other characterizations of Dedekind domains that are sometimes taken as the definition: see below. A field is a commutative ring in which there are no nontrivial proper ideals, so that any field is a Dedekind domain, however in a rather vacuous way.
Explores the properties and applications of logarithmic embeddings in number fields.
Explores primes in arithmetic progression, focusing on L-functions, characters, and the divergence of the sum of 1 over p for p congruent to a modulo q.
Covers the classical Lie algebras, focusing on calculations and dimensions.
Quantum support vector machines employ quantum circuits to define the kernel function. It has been shown that this approach offers a provable exponential speedup compared to any known classical algorithm for certain data sets. The training of such models c ...
Let k be a field, and let L be an etale k-algebra of finite rank. If a is an element of k(x), let X-a be the affine variety defined by N-L/k(x) = a. Assuming that L has at least one factor that is a cyclic field extension of k, we give a combinatorial desc ...
This article focuses on the history of one specific area of the city of Tirana, the capital of Albania: the downtown area, or the so-called 'small ring'. The text analyzes the interventions put forward by different administrations (both right and left-wing ...