En mathématiques, et plus précisément en algèbre, la théorie des corps de nombres – les extensions finies du corps Q des rationnels – fait apparaître un groupe abélien fini construit à partir de chacun de ces corps : son groupe des classes d'idéaux. Les premiers groupes de classes rencontrés en algèbre furent des groupes de classes de formes quadratiques : dans le cas des formes quadratiques binaires, dont l'étude a été faite par Gauss, une loi de composition est définie sur certaines classes d'équivalence de formes. On obtient ainsi un groupe abélien fini. Plus tard au , Kummer travailla à une théorie des corps cyclotomiques. Il comprit alors qu'il y avait une bonne raison pour que les tentatives de donner une démonstration complète du cas général du dernier théorème de Fermat par de simples méthodes de factorisation utilisant les racines de l'unité échouent : l'absence, en général, d'une décomposition en facteurs premiers dans l'anneau engendré par une racine de l'unité, était un obstacle majeur. La première étude de cette obstruction à la factorialité se trouve dans le travail de Kummer. L'obstruction obtenue par Kummer est, en langage contemporain, une partie du groupe des classes d'idéaux : en fait, Kummer a isolé la p-torsion dans ce groupe, pour le corps, dit cyclotomique, engendré par une racine primitive p-ième de l'unité, pour tout nombre premier p, et l'a identifiée comme la raison de l'échec des tentatives classiques de résolution du problème de Fermat (voir nombre premier régulier). Dedekind formula ensuite le nouveau concept d'idéal. Ce langage donnait un cadre pour l'unification des divers exemples étudiés notamment par Kummer. Il fut montré que l'anneau des entiers algébriques d'un corps de nombres, qui n'est pas toujours factoriel (et a fortiori pas principal), possède cependant la propriété que dans cet anneau (intègre), tout idéal non nul est produit d'idéaux premiers (c'est-à-dire que c'est un anneau de Dedekind). Cette propriété est analysée dans l'article « Idéal fractionnaire ».

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (8)
MATH-417: Number theory II.b - selected topics
This year's topic is "Additive combinatorics and applications." We will introduce various methods from additive combinatorics, establish the sum-product theorem over finite fields and derive various a
MATH-482: Number theory I.a - Algebraic number theory
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
MATH-317: Algebra V - Galois theory
Galois theory lies at the interface of Field Theory and Group Theory. It aims to describe the algebraic symmetries of fields. We will focus on Galois theory for finite field extensions and some applic
Afficher plus
Séances de cours associées (35)
Intégration logarithmique dans les champs numériques
Explore les propriétés et les applications des incorporations logarithmiques dans les champs numériques.
Anneaux Dedekind: Factorisation et groupe de classe idéal
Explore les anneaux de Dedekind, la factorisation, le groupe de classe idéal, l'hérédité, les extensions séparables et les propriétés matricielles.
Le groupe de classe discriminant et idéal en mathématiques
Explore le discriminant dans les matrices, les groupes de classes idéaux et les intégrations optimales en mathématiques.
Afficher plus
Publications associées (41)

The complexity of quantum support vector machines

Gian Florin Gentinetta, Stefan Woerner

Quantum support vector machines employ quantum circuits to define the kernel function. It has been shown that this approach offers a provable exponential speedup compared to any known classical algorithm for certain data sets. The training of such models c ...
Wien2024

NORM TORI OF ETALE ALGEBRAS AND UNRAMIFIED BRAUER GROUPS

Eva Bayer Fluckiger, Ting-Yu Lee

Let k be a field, and let L be an etale k-algebra of finite rank. If a is an element of k(x), let X-a be the affine variety defined by N-L/k(x) = a. Assuming that L has at least one factor that is a cyclic field extension of k, we give a combinatorial desc ...
Jerusalem2023

South Park

Marson Korbi

This article focuses on the history of one specific area of the city of Tirana, the capital of Albania: the downtown area, or the so-called 'small ring'. The text analyzes the interventions put forward by different administrations (both right and left-wing ...
2023
Afficher plus
Concepts associés (31)
Théorie algébrique des nombres
En mathématiques, la théorie algébrique des nombres est la branche de la théorie des nombres utilisant des outils issus de l'algèbre. Son origine est l'étude des nombres entiers et particulièrement les équations diophantiennes. Pour en résoudre certaines, il est utile de considérer d'autres entiers, dits algébriques. Un exemple est donné par le théorème des deux carrés de Fermat utilisant les entiers de Gauss. Ces ensembles sont équipés de deux lois — une addition et une multiplication — qui vérifient les mêmes propriétés élémentaires que les entiers relatifs : on parle d'anneaux.
Corps de nombres
En mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Anneau de Dedekind
thumb|Richard Dedekind définit et établit les bases de la théorie des anneaux portant maintenant son nom. En mathématiques, un anneau de Dedekind est un anneau commutatif disposant de propriétés particulières (voir aussi anneau de Dedekind non commutatif). Sa formalisation initiale a pour objectif la description d'un ensemble d'entiers algébriques, ce concept est aussi utilisé en géométrie algébrique. Les anneaux de Dedekind doivent leur origine à la théorie algébrique des nombres.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.