Summary
In statistics a minimum-variance unbiased estimator (MVUE) or uniformly minimum-variance unbiased estimator (UMVUE) is an unbiased estimator that has lower variance than any other unbiased estimator for all possible values of the parameter. For practical statistics problems, it is important to determine the MVUE if one exists, since less-than-optimal procedures would naturally be avoided, other things being equal. This has led to substantial development of statistical theory related to the problem of optimal estimation. While combining the constraint of unbiasedness with the desirability metric of least variance leads to good results in most practical settings—making MVUE a natural starting point for a broad range of analyses—a targeted specification may perform better for a given problem; thus, MVUE is not always the best stopping point. Consider estimation of based on data i.i.d. from some member of a family of densities , where is the parameter space. An unbiased estimator of is UMVUE if , for any other unbiased estimator If an unbiased estimator of exists, then one can prove there is an essentially unique MVUE. Using the Rao–Blackwell theorem one can also prove that determining the MVUE is simply a matter of finding a complete sufficient statistic for the family and conditioning any unbiased estimator on it. Further, by the Lehmann–Scheffé theorem, an unbiased estimator that is a function of a complete, sufficient statistic is the UMVUE estimator. Put formally, suppose is unbiased for , and that is a complete sufficient statistic for the family of densities. Then is the MVUE for A Bayesian analog is a Bayes estimator, particularly with minimum mean square error (MMSE). An efficient estimator need not exist, but if it does and if it is unbiased, it is the MVUE. Since the mean squared error (MSE) of an estimator δ is the MVUE minimizes MSE among unbiased estimators. In some cases biased estimators have lower MSE because they have a smaller variance than does any unbiased estimator; see estimator bias.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.