In thermodynamics, dissipation is the result of an irreversible process that affects a thermodynamic system. In a dissipative process, energy (internal, bulk flow kinetic, or system potential) transforms from an initial form to a final form, where the capacity of the final form to do thermodynamic work is less than that of the initial form. For example, transfer of energy as heat is dissipative because it is a transfer of energy other than by thermodynamic work or by transfer of matter, and spreads previously concentrated energy. Following the second law of thermodynamics, in conduction and radiation from one body to another, the entropy varies with temperature (reduces the capacity of the combination of the two bodies to do work), but never decreases in an isolated system. Processes with defined local temperature produce entropy at a certain rate. The entropy production rate times local temperature gives the dissipated power. Important examples of irreversible processes are: heat flow through a thermal resistance, fluid flow through a flow resistance, diffusion (mixing), chemical reactions, and electric current flow through an electrical resistance (Joule heating). Dissipative thermodynamic processes are essentially irreversible because they produce entropy. Planck regarded friction as the prime example of an irreversible thermodynamic process. In a process in which the temperature is locally continuously defined, the local density of rate of entropy production times local temperature gives the local density of dissipated power. A particular occurrence of a dissipative process cannot be described by a single individual Hamiltonian formalism. A dissipative process requires a collection of admissible individual Hamiltonian descriptions, exactly which one describes the actual particular occurrence of the process of interest being unknown. This includes friction and hammering, and all similar forces that result in decoherency of energy—that is, conversion of coherent or directed energy flow into an indirected or more isotropic distribution of energy.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (14)
ME-444: Hydrodynamics
Nondimensionalized Navier-Stokes equations result in a great variety of models (Stokes, Lubrication, Euler, Potential) depending on the Reynolds number. The concept of boundary layer enables us then t
PHYS-436: Statistical physics IV
Noise and fluctuations play a crucial role in science and technology. This course treats stochastic methods, applying them to both classical problems and quantum systems. It emphasizes the frameworks
ME-351: Thermodynamics and energetics II
This course will discuss advanced topics in thermodynamics with a focus on studying gas phases, mixtures, phase transformations and combustion. The application of these principles to various practical
Show more
Related lectures (53)
Irreversible Processes, Dissipation
Explores irreversible processes, dissipation, heat generation, subsystem behavior, and state variables.
Fracture Mechanics: Atomistic Cohesive Zone Law
Explores fracture mechanics, cohesive zone modeling, and crack growth behavior under varying stress levels, emphasizing the Atomistic Cohesive Zone Law.
Entropy and Second Law
Explores entropy calculations for reversible and irreversible processes, emphasizing the increase in total entropy for irreversible transformations.
Show more
Related publications (176)
Related concepts (17)
Irreversible process
In science, a process that is not reversible is called irreversible. This concept arises frequently in thermodynamics. All complex natural processes are irreversible, although a phase transition at the coexistence temperature (e.g. melting of ice cubes in water) is well approximated as reversible. In thermodynamics, a change in the thermodynamic state of a system and all of its surroundings cannot be precisely restored to its initial state by infinitesimal changes in some property of the system without expenditure of energy.
Heat transfer
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species (mass transfer in the form of advection), either cold or hot, to achieve heat transfer.
Non-equilibrium thermodynamics
Non-equilibrium thermodynamics is a branch of thermodynamics that deals with physical systems that are not in thermodynamic equilibrium but can be described in terms of macroscopic quantities (non-equilibrium state variables) that represent an extrapolation of the variables used to specify the system in thermodynamic equilibrium. Non-equilibrium thermodynamics is concerned with transport processes and with the rates of chemical reactions.
Show more
Related MOOCs (2)
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.