The Phong reflection model (also called Phong illumination or Phong lighting) is an empirical model of the local illumination of points on a surface designed by the computer graphics researcher Bui Tuong Phong. In 3D computer graphics, it is sometimes referred to as "Phong shading", particularly if the model is used with the interpolation method of the same name and in the context of pixel shaders or other places where a lighting calculation can be referred to as “shading”.
The Phong reflection model was developed by Bui Tuong Phong at the University of Utah, who published it in his 1975 Ph.D. dissertation. It was published in conjunction with a method for interpolating the calculation for each individual pixel that is rasterized from a polygonal surface model; the interpolation technique is known as Phong shading, even when it is used with a reflection model other than Phong's. Phong's methods were considered radical at the time of their introduction, but have since become the de facto baseline shading method for many rendering applications. Phong's methods have proven popular due to their generally efficient use of computation time per rendered pixel.
Phong reflection is an empirical model of local illumination. It describes the way a surface reflects light as a combination of the diffuse reflection of rough surfaces with the specular reflection of shiny surfaces. It is based on Phong's informal observation that shiny surfaces have small intense specular highlights, while dull surfaces have large highlights that fall off more gradually. The model also includes an ambient term to account for the small amount of light that is scattered about the entire scene.
For each light source in the scene, components and are defined as the intensities (often as RGB values) of the specular and diffuse components of the light sources, respectively. A single term controls the ambient lighting; it is sometimes computed as a sum of contributions from all light sources.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The students study and apply fundamental concepts and algorithms of computer graphics for rendering, geometry
synthesis, and animation. They design and implement their own interactive graphics program
In 3D computer graphics, Phong shading, Phong interpolation, or normal-vector interpolation shading is an interpolation technique for surface shading invented by computer graphics pioneer Bui Tuong Phong. Phong shading interpolates surface normals across rasterized polygons and computes pixel colors based on the interpolated normals and a reflection model. Phong shading may also refer to the specific combination of Phong interpolation and the Phong reflection model.
Computer graphics deals with generating s and art with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. A great deal of specialized hardware and software has been developed, with the displays of most devices being driven by computer graphics hardware. It is a vast and recently developed area of computer science. The phrase was coined in 1960 by computer graphics researchers Verne Hudson and William Fetter of Boeing.
Shading refers to the depiction of depth perception in 3D models (within the field of 3D computer graphics) or illustrations (in visual art) by varying the level of darkness. Shading tries to approximate local behavior of light on the object's surface and is not to be confused with techniques of adding shadows, such as shadow mapping or shadow volumes, which fall under global behavior of light. Shading is used traditionally in drawing for depicting a range of darkness by applying media more densely or with a darker shade for darker areas, and less densely or with a lighter shade for lighter areas.
Covers pinhole cameras, degrees of freedom, Phong lighting, and barycentric coordinates with sample exam questions.
Covers normal vectors, Phong lighting model, and affine transformations.
Covers the basics of ray tracing in computer graphics, explaining the generation of primary rays, intersection computations, and lighting models for diffuse and specular surfaces.
Photometric stereo, a computer vision technique for estimating the 3D shape of objects through images captured under varying illumination conditions, has been a topic of research for nearly four decades. In its general formulation, photometric stereo is an ...
EPFL2024
Evaluating the reflection of solar radiation by Building Integrated Photovoltaics (BIPV) with structured front-glass is challenging for two reasons. First, the resulting irregular scattering of light cannot be accounted for by simple reflection models. Sec ...
Computing light reflection from rough surfaces is an important topic in computer graphics. Reflection models developed based on geometric optics fail to capture wave effects such as diffraction and interference, while existing models based on physical opti ...