Concept

Divisor (algebraic geometry)

Summary
In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil by David Mumford). Both are derived from the notion of divisibility in the integers and algebraic number fields. Globally, every codimension-1 subvariety of projective space is defined by the vanishing of one homogeneous polynomial; by contrast, a codimension-r subvariety need not be definable by only r equations when r is greater than 1. (That is, not every subvariety of projective space is a complete intersection.) Locally, every codimension-1 subvariety of a smooth variety can be defined by one equation in a neighborhood of each point. Again, the analogous statement fails for higher-codimension subvarieties. As a result of this property, much of algebraic geometry studies an arbitrary variety by analysing its codimension-1 subvarieties and the corresponding line bundles. On singular varieties, this property can also fail, and so one has to distinguish between codimension-1 subvarieties and varieties which can locally be defined by one equation. The former are Weil divisors while the latter are Cartier divisors. Topologically, Weil divisors play the role of homology classes, while Cartier divisors represent cohomology classes. On a smooth variety (or more generally a regular scheme), a result analogous to Poincaré duality says that Weil and Cartier divisors are the same. The name "divisor" goes back to the work of Dedekind and Weber, who showed the relevance of Dedekind domains to the study of algebraic curves. The group of divisors on a curve (the free abelian group generated by all divisors) is closely related to the group of fractional ideals for a Dedekind domain. An algebraic cycle is a higher codimension generalization of a divisor; by definition, a Weil divisor is a cycle of codimension 1. A Riemann surface is a 1-dimensional complex manifold, and so its codimension-1 submanifolds have dimension 0.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood